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Abstract. It is shown that the singular Poisson reduction procedure can be improved for a
large class of situations. In addition, Poisson reduction of orbit type manifolds is carried
out in detail.
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1. Introduction

A smooth Poisson manifold (M, {· , ·}) with a free and proper action of a Lie group
G on it can be reduced and the quotient space inherits a Poisson structure induced
from the one on M . The reduced space can be seen as the leaf space of the verti-
cal distribution of the action, that is, the distribution spanned by the fundamental
vector fields ξM , ξ ∈g (where g is the Lie algebra of G).

This leads to the approach of Marsden and Ratiu [3] of Poisson reduction by
distributions: one is given an embedded submanifold S of M and a vector bundle
B ⊂ T M |S such that BS = B ∩ T S is a canonical regular integrable distribution on
S. Then there is a necessary and sufficient condition for the leaf space S/BS to
inherit a smooth Poisson structure from the one on M . It was shown in Falceto
and Zambon [1] that this necessary and sufficient condition always holds unless the
distribution B is zero.

The method of Marsden and Ratiu [3] was generalized in Ortega and Ratiu [5]
to an arbitrary decomposed subset S of M and distributions in T M |S adapted to
the decomposition of S (see also Ortega and Ratiu [4]). This raises the following
question: does an analogous statement to the results of Falceto and Zambon [1]
hold for the generalized situation of Ortega and Ratiu [5]? In this note we present
a result that not only recovers the statement in Falceto and Zambon [1] but is also
applicable to the singular situation.

Partially supported by a Swiss NSF grant.



140 MADELEINE JOTZ AND TUDOR S. RATIU

In addition, we show that if a Lie group acts properly and canonically on a
Poisson manifold, each stratum of the reduced space inherits a Poisson structure;
the necessary and sufficient condition for the generalized Reduction Theorem for
Poisson Manifolds by Pseudogroups is always satisfied if the considered pseudo-
group is a Lie group and the subset of M an orbit type of the action (hence an
embedded submanifold).

All definitions and notations needed here can be found in Ortega and Ratiu [4].
The statements used in this note without proof are also taken from this book. We
will specify at the beginning of each section which section of this book is used.

2. The Reduction Theorem

2.1. DEFINITIONS AND NOTATIONS

The following background material is taken from Ortega and Ratiu [4, Section
10.4].

Let M be a differentiable manifold and S ⊆ M a decomposed subset of M . Let
{Si }i∈I be the pieces of this decomposition. The topology of S is not necessarily
the relative topology as a subset of M . We say that D ⊂ T M |S is a smooth gener-
alized distribution (that is, not necessarily of constant rank) on S adapted to the
decomposition {Si }i∈I if DSi := D ∩ T Si is a smooth distribution on Si for all i ∈ I .

The distribution is said to be integrable if DSi is integrable for each i ∈ I . Then,
we can partition each Si into the corresponding maximal integral manifolds. The
resulting equivalence relations on each Si induce an equivalence relation DS on the
whole set S. Define

S/DS :=∪i∈I Si/DSi

and let πDS : S → S/DS be the natural projection. We say that a subset R ⊂ S is
DS-invariant if it is invariant under the flow of any section of DSi , for all i ∈ I .

We define the presheaf of smooth functions C∞
S/DS

on S/DS as the map that
associates to any open subset V of S/DS the set of functions C∞

S/DS
(V ) char-

acterized by the following property: f ∈ C∞
S/DS

(V ) if and only if for any z ∈ V

there exists m ∈ π−1
DS

(z), Um an open neighborhood of m ∈ M such that Um ∩ S is
DS-invariant, and F ∈C∞

M (Um) satisfying

f ◦πDS |π−1(V )∩Um
= F |π−1(V )∩Um

. (1)

We say that F is a local extension of f ◦πDS at the point m ∈π−1
DS

(V ).
Recall the following definitions.

DEFINITION 2.1. Let (M, {· , ·}) be a Poisson manifold, S ⊂ M a decomposed
space, and D ⊂ T M |S a smooth distribution adapted to the decomposition {Si }i∈I

of S. The distribution D is called Poisson or canonical if the condition d f |D =
dg|D =0, for any f, g ∈C∞

M (U ), U ⊂ M an open subset, implies that d{ f, g}|D =0.
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DEFINITION 2.2. The presheaf C∞
S/DS

is said to have the (D, DS)-local extension
property when the topology of S is stronger than the relative topology and the
local extensions of f ◦πDS defined in (1) can always be chosen to satisfy

dF(n)|D(n) =0, for any n ∈π−1
DS

(V )∩Um .

We say that F is a local D-invariant extension of f ◦πDS at the point m ∈π−1
DS

(V ).

We immediately get the following result.

LEMMA 2.3. Let D be canonical and C∞
S/DS

have the (D, DS)-local extension prop-
erty. If F and G ∈C∞

M (Um) are local D-invariant extensions of f ◦πDS and g ◦πDS

at m ∈π−1
DS

(V ), then their Poisson bracket {F, G} is also local D-invariant.

This statement is needed in the proof of the reduction theorem (Theorem 10.4.8
in Ortega and Ratiu [4]). Note that if S is an embedded submanifold of M and
D ⊆ T M |S a subbundle of the tangent bundle of M restricted to S such that DS :=
D ∩ T S is a smooth, integrable subbundle of T S, the distribution D is canonical
in the sense of Definition 2.1 if and only if it is canonical in the sense of Marsden
and Ratiu [3] and Falceto and Zambon [1].

2.2. THE REDUCTION THEOREM

We present here a proof of the Poisson Reduction by Distributions Theorem in
Ortega and Ratiu [4]. This proof is not new but since it is only outlined in Ortega
and Ratiu [4], we decided to present it here to better put in context the proposition
following it.

DEFINITION 2.4. Let (M, {· , ·}) be a Poisson manifold, S a decomposed subset
of M , and D ⊂ T M |S a Poisson integrable distribution that is adapted to the
decomposition of S. Assume that C∞

S/DS
has the (D, DS)-local extension property.

We say that (M, {· , ·}, D, S) is Poisson reducible when (S/DS,C∞
S/DS

, {· , ·}S/DS ) is a
well-defined presheaf of Poisson algebras where, for any open set V ⊂ S/DS , the
bracket

{· , ·}S/DS
V :C∞

S/DS
(V )×C∞

S/DS
(V )→C∞

S/DS
(V )

is given by

{ f, g}S/DS
V (πDS (m)) := {F, G}(m),

for any m ∈π−1
DS

(V ) and local D-invariant extensions F and G at m of f ◦πDS and
g ◦πDS , respectively.
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THEOREM 2.5. Let (M, {· , ·}) be a Poisson manifold with associated Poisson
bivector field B ∈�(�2(T M)), S a decomposed space, and D ⊂ T M |S a Poisson inte-
grable generalized distribution adapted to the decomposition of S. Assume that C∞

S/DS

has the (D, DS)-local extension property. Then (M, {· , ·}, D, S) is Poisson reducible if
and only if for any m ∈ S

B�(�m)⊂
(
�S

m

)◦
(2)

where

�m :=
{

dF(m)

∣∣∣∣
F ∈C∞

M (Um),dF(s)|D(s) =0 for all s ∈Um ∩ S,

and for any open neighborhood Um of m in M

}
,

and

�S
m :=

{
dF(m)∈�m

∣∣∣∣
F |Um∩Vm is constant for an open neighborhood Um

of m in M and an open neighborhood Vm of m in S

}
.

Remark 2.6. If S is endowed with the relative topology, then the definition of �S
m

simplifies to

�S
m =

{
dF(m)∈�m

∣∣∣∣
F |Um∩S is constant for an open
neighborhood Um of m in M

}
.

This observation will be crucial in the proof of the next proposition.

Proof. Assume that (M, {· , ·}, D, S) is Poisson reducible. Let m ∈ S and choose
dF(m)∈�m , that is, F ∈C∞

M (Um) where Um is an open neighborhood of m in M ,
such that Um ∩ S is DS-invariant and dF(s)|D(s) =0 for all s ∈Um ∩ S. Choose in the
same manner an arbitrary dG(m)∈�S

m , that is, G ∈C∞
M (Um), such that dG(s)|D(s) =

0 for all s ∈Um ∩ S and G|Um∩Vm = k ∈ R is constant, where Vm is an open neigh-
borhood of m in S. Since F |S∩Um and G|S∩Um are DS-invariant, they have constant
values on the leaves of DS . Hence, if V ⊂ S/DS is the open set V :=πDS (Um ∩ S)

(note that Um ∩ S is open in S because the topology of S is stronger than the
topology induced from M), the functions F, G ∈ C∞

M (Um) define f, g ∈ C∞
S/DS

(V )

such that f ◦ πDS |π−1
DS

(V )∩Um
= F |

π−1
DS

(V )∩Um
and g ◦ πDS |π−1

DS
(V )∩Um

= G|
π−1

DS
(V )∩Um

.

Since G is constant on Um ∩ Vm , the function g is constant on the neighborhood
πDS (Um ∩ Vm) of πDS (m) in S/DS and thus we have

{ f, g}S/DS
V (πDS (m))=0.

This yields {F, G}(m)={ f, g}S/DS
V (πDS (m))=0 and hence

dG(m)
(
B�(dF(m))

)={F, G}(m)=0.

This proves the desired inclusion

B�(�m)⊂ (�S
m)◦.
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Conversely, assume that (2) is satisfied for all m∈S. We show that (M, {· , ·}, D, S)

is Poisson reducible, hence, that (S/DS,C∞
S/DS

, {· , ·}S/DS ) given in Definition 2.4 is
well-defined. Recall the definition of {· , ·}S/DS : if V is an open subset of S/DS and
f, g ∈C∞

S/DS
(V ), then for all m ∈π−1

DS
(V ), we define { f, g}S/DS

V (πDS (m))={F, G}(m),
where F, G ∈ C∞

M (Um) are local D-invariant extensions of f ◦ πDS and g ◦ πDS ,
respectively, and Um is an open neighborhood of m ∈ M such that Um ∩ S is
DS-invariant.

We want to show that the following definition of { f, g}S/DS
V ∈ C∞

S/DS
(V ) makes

sense:

{ f, g}S/DS
V ◦πDS |Um∩π−1

DS
(V )

:= {F, G}|Um∩π−1
DS

(V )
.

Since D is canonical, by Lemma 2.3, the function {F, G}|Um∩S is D-invariant
and thus constant along the integral curves of any section of DSi at points where
this makes sense. Let m,m′ ∈ M be such that π(m)=π(m′). Let F ′, G ′ ∈ C∞

M (Um′)
be local D-invariant extensions of f ◦ πDS and g ◦ πDS , respectively, where Um′
is an open neighborhood of m′ ∈ M such that Um′ ∩ S is DS-invariant. Let i0 ∈ I
be the index such that m ∈ Si0 . Then, by definition of πDS , m′ ∈ Si0 can be con-
nected to m by a finite union of integral curves of sections of DSi0

and hence
{F ′, G ′}(m)={F ′, G ′}(m′). Since Um ∩ S and Um′ ∩ S are both DS-invariant, it fol-
lows that Um ∩Um′ ∩ S is also DS-invariant and contains m and m′. Thus, we have
only to check that {F ′, G ′}(m)={F, G}(m), that is, that {F, G}(m) does not depend
on the choice of the extensions F and G. Because of the antisymmetry of {· , ·},
it suffices to show that it does not depend on the choice of the extension G. Let
G ′ ∈ C∞

M (Um) be another local D-invariant extension of g ◦ πDS . Then we have
(G −G ′)|Um∩π−1(V ) =0 and d(G −G ′)|D(s) =dG|D(s) −dG ′|D(s) =0 for all s ∈Um ∩ S.
Hence d(G − G ′)(m)∈�S

m . Since dF(m)∈�m by definition, we get using (2):

{F, G − G ′}(m)=d(G − G ′)(m)
(
B�(dF(m))

)=0.

This yields {F, G}(m)={F, G ′}(m).
The Leibniz and Jacobi identities for {· , ·}S/DS

V follow directly from the definition
of {· , ·}S/DS

V and the fact that {· , ·} satisfies these identities.

If S is a submanifold of M and D is a subbundle of T M |S such that DS =
D ∩ T S is a smooth regular integrable subbundle of T S, we have �m = D(m)◦ and
(�S

m)◦ = Tm S + D(m) (note that all annihilators are pointwise annihilators). In this
setting, a lemma in Falceto and Zambon [1] shows that if D is canonical, then it
is either trivial or B�(D(m)◦)= B�(�m) is automatically contained in Tm S ⊆ (�S

m)◦.
The following is a direct generalization of this lemma in Falceto and Zambon

[1].

PROPOSITION 2.7. In the setting of Theorem 2.5, if the topology of S coincides
with the relative topology of S as a subset of M and if D does not vanish (at any



144 MADELEINE JOTZ AND TUDOR S. RATIU

point) on S, we have B�(�m)⊂ (
�S

m

)◦
for all m ∈ S. Thus, if S is endowed with the

relative topology, condition (2) in Theorem 2.5 automatically holds.

Proof. Assume that there exists m ∈ S such that B�(�m) 
⊂ (
�S

m

)◦
. Then we

find F, G ∈ C∞
M (Um), where Um is an open neighborhood of m in M , such that

dF(s)|D(s) =dG|D(s) =0 for all s ∈Um ∩ S, and G|Um∩S =k ∈R is constant, such that
{F, G}(m) = dG(m)

(
B�(dF(m))

) 
= 0. Note that we have used here in an essential
way the fact that S is endowed with the relative topology; see Remark 2.6. With-
out loss of generality, we have G|Um∩S =0 (otherwise, replace G with G − k).

Let H ∈C∞
M (U ′

m) be an arbitrary function defined on a neighborhood U ′
m ⊂Um

of m ∈ M . Then we have (H G)|U ′
m∩S = 0 and d(H G)(s)|D(s) = G(s)dH(s)|D(s) +

H(s)dG|D(s) =0 for all s ∈U ′
m ∩ S. Thus, we get d(H G)|D =0 on U ′

m . Since dF |D =
0 on U ′

m by construction, we get d{F, G H}|D = 0 on U ′
m because D is canonical.

This yields:

0=d{F, G H}|D(m) =d (G{F, H}+ H{F, G}) |D(m) =
= G(m)d{F, H}|D(m) +{F, H}(m)dG|D(m) +

+ H(m)d{F, G}|D(m) +{F, G}(m)dH |D(m) =
=0 ·d{F, H}|D(m) +{F, H}(m) ·0+ H(m) ·0+{F, G}(m)dH |D(m) =
={F, G}(m)dH |D(m).

Thus, we get dH |D(m) =0. Because H was arbitrary, we have αm(D(m))=0 for all
αm ∈ T ∗

m M . Hence we get D(m)=0, a contradiction since D does not vanish on S
by hypothesis.

3. Poisson Reduction by Proper Symmetries

In this section we use Ortega and Ratiu [4, Section 10.2].
Let G be a Lie group acting properly and canonically on the Poisson mani-

fold M . Let S be an orbit type manifold of the action. Proposition 2.7 cannot be
applied if we take D to be the restriction V of the vertical distribution span{ξM |
ξ ∈g} to S since V can vanish on S. In spite of this, we know from Jotz et al. [2]
that (M, {· , ·},V, S) is always reducible. This was done using singular Dirac reduc-
tion. We will prove this result here directly.

To do this, it is more natural to show that the hypotheses for the Poisson Reduc-
tion by Pseudogroups (see Ortega and Ratiu [4]) are always satisfied if the pseudo-
group is the group of diffeomorphisms associated to the proper and canonical
action of a Lie group G on M . The Poisson reduction of S by the vertical space
V of the action is then the counterpart of this theorem in the approach of Poisson
reduction by distributions.

Let, in general, (M, {·, ·}) be a smooth Poisson manifold, G a Lie group acting
properly and canonically on M , and S ⊂ M an embedded G-invariant submanifold
of M . Then G acts properly on S and we can regard the quotient S/G as a subset
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of M/G. Let π : M → M/G be the projection and C∞(M/G) :=C∞
M,G(M/G) be the

set of functions f̄ on M/G such that π∗ f̄ ∈C∞(M)G (we denote by C∞(M)G the
G-invariant smooth functions on M). There is a well-defined presheaf of Whitney
smooth functions C∞

M/G(S/G) on S/G induced by C∞(M/G), that is, for f̃ ∈
C∞

M/G(S/G) defined on the open set V ⊆ S/G, there exists f̄ ∈ C∞(M/G) defined
on the open set U ⊆ M/G such that f̃ |U∩V = f̄ |U∩V . Properness of the action and
the fact that S is a G-invariant embedded submanifold of M yield the equality

C∞
M/G(S/G)=C∞

S,G(S/G).

DEFINITION 3.1. We say that (M, {·, ·}, G, S) is Poisson reducible when
(

S/G,C∞
M/G(S/G), {·, ·}S/G

)

is a well-defined presheaf of Poisson algebras where, for any open set V ⊂ S/G, the
bracket {·, ·}S/G

V :C∞
M/G(V )×C∞

M/G(V )→C∞
M/G(V ) is given by

{ f, h}S/G
V (πS(m))={F, H}(m) (3)

for any m ∈π−1
S (V ) and any G-invariant local extensions F, H ∈C∞(M)G at m of

f ◦πS and h ◦πS , respectively.

We will show that the necessary condition of the following theorem is always
satisfied if S is an orbit type manifold of the proper action of G on M .

THEOREM 3.2. Let G be a Lie group acting properly and canonically on the
Poisson manifold (M, {·, ·}). Let S be an embedded G-invariant submanifold of M .
Then (M, {·, ·}, G, S) is Poisson reducible if

B�
((

(g ·m)◦
)Gm

)
⊂ Tm S, for any m ∈ S. (4)

Note that ((g ·m)◦)Gm is equal to

span{d f (m) | f ∈C∞(M)G defined on a neighborhood of m}.
We recall here some facts about proper actions. Let � : G × M → M be a proper

action of the connected Lie group G on M . Define for each compact subgroup H
of G the orbit type manifold

M(H) ={m ∈ M | Gm is conjugated to H}, (5)

and the isotropy type manifold

MH ={m ∈ M | Gm = H}, (6)

where Gm is the isotropy subgroup of the point m ∈ M . Connected components of
M(H) and MH are embedded submanifolds of M . The connected components of
the orbit type manifolds form a Whitney stratification of the manifold M .
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The quotient space M̄ := M/G ={Gm |m ∈ M} is also a Whitney stratified space.
Its strata are the connected components of the sets π(M(H)) = π(MH ), where π :
M → M̄ is the projection. Let P be a connected component of an orbit type man-
ifold M(H). The subgroup G P := {g ∈ G | �g(P) ⊆ P} ⊂ G is a union of connected
components of G and is hence a Lie subgroup of G. Indeed, it is clear that the
connected component of the identity G◦ of G is a subgroup of G P . The connected
component of any other element g ∈ G equals gG◦. For any h ∈ G◦ and g ∈ G P, we
have �gh(P)=�g(�h(P))⊆�g(P)⊆ P , which shows that gG◦ ⊆ G P .

Hence the proper action of G on M restricts to a proper action �P of G P on
P satisfying ιP ◦�P

g =�g ◦ ιP for all g ∈ G P . Moreover, the action �P has conju-
gated isotropy subgroups and thus the quotient P/G P is a smooth manifold. Let
πP : P → P/G P be the quotient map. The quotient P/G P is diffeomorphic to the
stratum π(P)= P̄ of M̄ , that is, the differentiable structures on P̄ as a subset of
M̄ and as the quotient of P by the action of G P coincide. The proof of this can
be found, for example, in Jotz et al. [2].

The smooth generalized distribution T spanned by the smooth G-invariant vec-
tor fields on M is integrable in the sense of Sussmann. Its leaves are the connected
components of the isotropy type manifolds, that is, the G-invariant vector fields on
M are tangent to the isotropy type manifolds (and hence to the orbit type mani-
folds); see Ortega and Ratiu [4, Section 3.5] for a proof of this fact.

PROPOSITION 3.3. Let (M, {· , ·}) be a smooth Poisson manifold and G a Lie
group acting properly and canonically on (M, {· , ·}). Let S := π−1(S̄), where S̄ is a
stratum of M̄ . Then, for any m ∈ S, the following inclusion holds:

B�
((

(g ·m)◦
)Gm

)
⊂ Tm S.

Therefore, (M, {· , ·}, G, S) is Poisson reducible.

Proof. Note that S is a union of connected components having the same dimen-
sion of some orbit type manifold. Hence S is a G-invariant submanifold of M .

Let m ∈ S and f a G-invariant function defined on a neighborhood of m. Since
the action of G on M is canonical, we have for all g ∈ G and all h ∈C∞(M)

�∗
g

(
B�(d f )

)
(dh)=dh

(
T �g−1 ◦ B�(d f )◦�g

)
= (�∗

g−1 dh)
(
B�(d f )

)◦�g =
= B(d f,�∗

g−1 dh)◦�g ={ f,�∗
g−1 h} ◦�g ={�∗

g f, h}=
={ f, h}= (

B�(d f )
)
(dh).

Thus, B�(d f ) is a G-invariant vector field on M and hence its value at m ∈ S is
tangent to S (as stated above, it is tangent to the connected component of the
isotropy type manifold through m, which is a submanifold of S). Hence, for all
d f (m)∈ ((g ·m)◦)Gm , f ∈C∞(M)G , we have B�(d f (m))∈ Tm S.
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To get a feeling for the condition in Theorem 3.2, we reprove directly that there
is a reduced Poisson structure on every stratum of M̄ .

THEOREM 3.4. Let (M, {· , ·}) be a smooth Poisson manifold and G a Lie group
acting canonically and properly on it. Each stratum P̄ of M̄ = M/G is a smooth
Poisson manifold with Poisson bracket {· , ·}P̄ given by

π∗
P { f P̄ , h P̄ }P̄ = ι∗P {π∗ f̄ , π∗h̄} for all f P̄ , h P̄ ∈C∞(P̄),

where f̄ , h̄ ∈C∞(M̄) are smooth extensions of f P̄ , h P̄ .

Proof. We have to show that the bracket {· , ·}P̄ is well-defined and does not
depend on the choice of the smooth extensions. Let f P̄ , h P̄ ∈ C∞(P̄) be defined
on an open set U ⊆ P̄ . By symmetry, it suffices to show that if f̄ and f̄ ′ are two
extensions of f P̄ and h̄ an extension of h P̄ , then

ι∗P {π∗ f̄ , π∗h̄}= ι∗P {π∗ f̄ ′, π∗h̄}.
Let V ⊆ M̄ be the domain of definition of f̄ , f̄ ′, h̄. We have

{π∗ f̄ −π∗ f̄ ′, π∗h̄}=−B�(π∗dh̄)(π∗d( f̄ − f̄ ′))=−π∗d( f̄ − f̄ ′)
(
B�(π∗dh̄)

)
.

We have seen in the proof of the preceding proposition that B�(π∗dh̄) is a
G-invariant vector field on M and is thus tangent to the isotropy type manifolds
(see [4, Section 3.5]). Hence, if P is the union of strata of M projecting to the stra-
tum P̄ of M̄ , the value of B�(π∗dh̄) at m is tangent to P for all m ∈π−1(V )∩ P =
π−1(U ). Since f̄ − f̄ ′ vanishes on P̄ , the differential π∗d( f̄ − f̄ ′) is zero on T P .
Thus, we have (π∗d( f̄ − f̄ ′))

(
B�(π∗dh̄)

)
(m)=0 and hence {π∗ f̄ −π∗ f̄ ′, π∗h̄}(m)=

0. This yields ι∗P {π∗ f̄ −π∗ f̄ ′, π∗h̄}=0 and hence the required equality.
The Leibniz rule and Jacobi identity follow from the properties of (M, {· , ·}).
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