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ABSTRACT 

 

With  the  development  of  structural  analysis  software,  computer  simulation  becomes  an 

important tool for structural engineers and researchers to understand structural behavior. 

Structural performance can be evaluated by computer simulation at a low cost in contrast 

to  physical  experiments.  The  research  in  this  dissertation  is  based  on finite  element 

analysis and simulation.  

 

Torsion response for open cross-section members always interests researchers because of 

its  complexity.  In  Chapter  2,  torsional response  of  typical  cold-formed  steel  members 

with  channel cross sections  was explored.  Experimental  and  simulation  results  were 

compared with different boundary conditions. In the end of the chapter, a Direct Strength 

Method type design expression was provided based on simulation results.  

 

Structural members, e.g. beam and column, are elementary components in a building. A 

subsystem  is  a  higher-level  component,  e.g.,  lateral  force  resistance  system  and  gravity 

load  resistance  system.  Shear  wall  and  diaphragm  are  crucial  lateral  force  resistance 

subsystems  in  a  building. A fastener-based CFS  OSB  sheathed shear  wall model was 

developed and validated against existed shear wall experiments in Chapter 3. After that, 

this fastener-based shear wall model was used to illustrate gravity wall effect on wall line 

lateral force resistance and evaluate shear wall reliability. Chord stud buckling was also 

considered in the shear wall model by using a pinching04 model for chord stud element. 

The last two chapters include modeling work of bare steel deck panels. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Cold-Formed Steel Members and Systems 

1.1.1 Cold-Formed Steel Members and Applications 

Cold-formed  steel  members are widely used  in many  structural  applications: buildings, 

storage  racks,  bridges, cars,  aircraft,  etc. Comparing  to  hot-rolled  steel  products,  which 

are  formed  at  elevated  temperatures,  the  manufacturing  of  cold-formed  steel  products 

occurs at room temperature. The thicknesses for such cold-formed steel members usually 

range from about 0.10 mm to 7 mm. Some steel plates can be as thick as around 25 mm.  

 

Building elements that can be framed with cold-formed steel include floors, roofs, walls, 

and  other building  parts.  Both  structural  and  non-structural  assemblies  can be framed 

with  cold-formed  steel. Cold-formed  steel  has  many  advantages  over  other  material, 

including: light weight; fast and easy to fabricate and install; economy in transportation 

and handling; and very energy efficient. Figure 1-1 are typical cold-formed steel (CFS) 

buildings. Nowadays cold-formed steel framing buildings are used mostly as low to mid 

story  buildings  because  of  their  member  property,  and  the  highest  cold-formed  steel 

buildings  are  ranged  from  eight  to  ten  stories. The  fire  resistance  of  cold-formed  steel 

buildings is often improved by its construction details. 
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Figure 1-1. Typical cold-formed steel buildings ([8]) 

 

1.1.2 Torsion, Shear wall and Diaphragm in Cold-Formed Steel Structure 

Since  most  common  cross  sections  in  cold-formed  steel  members  are  open,  torsion  is 

fundamental  to  the  response  of  cold-formed  steel  members.  For  example,  torsion  is 

developed  in  cold-formed  steel  lipped  channel  beams  (joists,  purlins,  girts,  etc.)  loaded 

away from their shear center. Torsion also plays a key role in buckling instabilities at the 

member level with lateral-torsional buckling of beams, and flexural-torsional buckling of 

columns; and at the cross-section level with (flange/web) distortional buckling. In cold-

formed  steel  design  the  basic  philosophy  is  to  try  to  eliminate  torsion  to  the  greatest 

extent possible and little research has been done to examine torsion in isolation for cold-

formed steel members.  

 

The theory for the elastic torsional response of thin-walled open sections was developed 

by Vlasov,  Timoshenko  and  other researchers,  and  remains  the  primary  tool  for  design 

prediction  methods. In  this  research  basic  aspects  of  torsion  in  cold-formed  steel 

members  is  explored  from  a  review  of  classical  elastic  response  and  a  pilot  set  of 









 6 

transverse features such as embossments. These panels can serve as walls, floors or roof 

in many metal buildings, and form an integral component of common floor systems in a 

wide variety of buildings. When distributing lateral load this system acts as a diaphragm, 

with all elements in the system contributing: panel, panel inter-connections, joists, joist-

to-panel  connections,  primary  framing,  and  framing-to-panel  connections. Under  lateral 

loads the panels play a particularly important role as a distribution element, one in which 

the  in-plane  shear  behavior  of  the  panel  is  paramount. In the  last  two chapters  of  this 

dissertation, modeling work on bare steel deck is presented. 

1.1.3 Codes and Standards 

For  cold  formed  steel  member  design,  AISI  S100  provides  design  details  for  members 

under  axial  loading,  flexure,  shear,  and  combined  forces. In  terms  of  lateral  force 

resistance system design in cold-formed steel building, AISI S213-07 provides different 

shear wall capacities based on previous CFS shear wall tests. Components in CFS shear 

wall design should also follow AISI-S100 etc. for member (stud, ledger, etc.) design. 

 

In 2016,  new  AISI  cold-formed  steel  design  specifications  were  released.  Several 

different previous specifications are merged into two new specifications: North American 

Standard for Seismic Design of Cold-form Steel Structural Systems (AISI S400-15) and 

North  American  Standard  for  Cold-Formed  Steel  Structural  Framing (AISI  S240-15). 

Figure  1-5  illustrated  what  change  happened  and  how  they  are  merged  to  the  new 

specifications. 
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(a) CFS-NEES building ([8]) 

 

(b) Cold-formed steel metal building 

Figure 1-6 Cold-formed steel members and systems 

 

1.2.1 Shell Finite Element Models 

To model cold-formed steel members, shell element is always a good option because of 

the  geometric  feature  in  thin-walled  members:  the  dimension  in  transverse  direction  is 

much smaller than in other directions.  

a: cold-formed steel stud b: oriented strand board shear wall 

c: bare steel panel 
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Schafer  and  Pekoz  included  imperfections  and  membrane  residual  stress  in  ABAQUS 

models for a compression flange to check the impact of different modeling assumptions. 

Schafer,  Li  and  Moen  performed  a  comprehensive  study  on  computational  modeling  of 

CFS  members  for  both  buckling  and  collapse  analysis.  They  compared  elastic  buckling 

analysis  results  between  ABAQUS  shell  finite  element  models,  finite  strip  method  and 

classical solutions. In terms of collapse analysis, sensitivities of solvers, element type and 

discretization,  boundary  conditions,  initial  imperfections  and  residual  stress  are  all 

considered  in  GMNIA  analysis.  In  Foroughi  et  al  2014,  they  summarized  current 

approaches  and  of  thin  metallic  shell  structural  members  and  evaluated  the  existed 

GMNIA analysis tools. 

1.2.2 Nonlinear CFS Shear Wall Models 

Several different computational or analytical methods have been used to capture the non-

linear behavior of CFS or wood-framed shear walls. One modeling approach is to use a 

single, complex spring element to represent each shear wall. This approach requires full-

scale cyclic test data to calibrate the spring element properties, but allows for modeling of 

entire buildings. A second approach uses finite element models of CFS shear walls with 

non-linear  shell  and  fastener  elements.  In  such  models  the  computational  complexity 

typically precludes modeling of full buildings or a large number of different shear wall 

configurations.  

 

For  wood-framed  shear  walls,  a  fastener-based  approach  has  been  used  to  derive 

analytical  expressions  for  key  response  parameters,  such  as  lateral  strength  or  total 
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displacement,  a  detailed  discussion  of  which  is  provided  in  Chen.  A  fastener-based 

modeling approach for the full cyclic behavior of wood-framed shear walls has also been 

incorporated into the nail-pattern analysis module of the SAWS and SAPWood software, 

as well as into general-purpose finite-element software.  

 

For  CFS  shear  walls  fastener-based  analytical  approaches  to  strength  and  displacement 

have also been developed. These analytical approaches only estimate peak strengths and 

deflections  and  do  not  attempt  to  capture  the  complete  monotonic  or  cyclic  load-

displacement  behavior.  These  analytical  approaches  also  introduce  some  simplifying 

assumptions, such as rigid framing members with pin-connections or rigid hold-downs. 

1.2.3 Bare Steel Deck Models 

The  notion  of  employing  an  equivalent  orthotropic  flat  plate  to  simulate  a  corrugated 

plate  has  long  been  used  in  engineering.  Typically,  out-of-plane  bending  behavior  is  of 

primary  interest  as  opposed  to  in-plane  behavior  and  early  work  such  as  Easley  and 

Mcfarland (1969) investigated equivalent flexural rigidities. More recently Samanta and 

Mukhopadhyay (1999) re-examined the problem and developed closed-form expressions 

for the orthotropic plate rigidities for both out-of-plane (flexure) and in-plane (extension 

and  shear).  This  was  followed  by  Xia  et  al.  (2012),  who  expanded  on  the  earlier  work 

including correcting some assumptions, and derived a set of plate rigidities for equivalent 

orthotropic plates to model the elastic stiffness of a corrugated plate. 

 

C.A.  Rogers  and R.  Tremblay have  conducted  a  several  years  research  project  on  bare 

steel  deck  diaphragm. They  developed  linear  elastic  finite  element  (FE)  models  in 
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SAP2000 for the initial stages of the roof diaphragm in-plane shear behavior in their test. 

In  the  model,  four-node  flat  shell  element  was  selected  capable  of  developing  bending 

and  membrane  behavior.  Link  element  was  used  to  model  the  sidelap, deck-to-frame 

connections  and  contact  surfaces.  This  shell  FE  model  can  reproduce  the  elastic  load–

deformation behavior of the diaphragm tests accurately. 
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CHAPTER 2  

TORSION OF COLD-FORMED STEEL LIPPED CHANNELS DOMINATED BY 

WARPING RESPONSE 

 

2.1 Abstract 

The objective of this chapter is to provide benchmark test results, explanatory shell finite 

element models, and preliminary Direct Strength Method prediction for cold-formed steel 

lipped channels undergoing torsion dominated by warping response. Although the elastic 

theory  for  the  torsional  response  of  a  thin-walled  cold-formed  steel  lipped  channel 

member is well-developed, the extent to which warping torsion dominates the response of 

cold-formed  steel  members  is  not  widely  appreciated.  Further,  for  cold-formed  steel 

members  in  torsion  little  exists  in  terms  of  experimental  benchmarks  and  even  less  on 

situations  beyond  the  classic  elastic  theory,  including  geometric  nonlinearity  and  post-

buckling,  and/or  material  nonlinearity  from  partial  to  full  plastification  of  the  section. 

Here, a typical cold-formed steel lipped channel member loaded experimentally in torsion 

exhibits significant strength beyond first yield. Shell finite element models of the testing 

correlate  well  with  the  experiments  and  indicate  the  extent  of  plastification  as  the  thin-

walled  member  undergoes  torsion  dominated  by  warping  response.  Idealized  end 

boundary conditions are developed for the shell finite element model that is conservative 

with  respect  to  the  response,  and  in  agreement  with  classical  expressions  in  the elastic 

regime. The shell finite element model with idealized end boundary conditions is used to 

develop  a  parametric  study  on  ultimate  torsional  capacity  for  members  dominated  by 
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warping  torsion.  The  results  indicate  that  torsional  slenderness  may  be  used to  predict 

torsional  capacity  and  indicate  that  Direct  Strength  Method  predictions  for  torsion  for 

members dominated by warping torsion are possible. Preliminary design expressions for 

warping torsion strength prediction are provided. 

2.2 Introduction 

Torsion  is  fundamental  to  the  response  of  cold-formed  steel  members  since  common 

sections  are  open,  with  relatively  weak  torsional  resistance,  and  often  singly- or  un-

symmetric. For thin-walled cold-formed steel members torsion manifests itself in direct 

form or through instability. For example, cold-formed steel lipped channel beams (joists, 

purlins,  girts,  etc.)  loaded  away  from  their  shear  center  develop  torsion.  Torsion  also 

plays  a  key  role  in  buckling  instabilities  at  the  member  level  with  lateral-torsional 

buckling  of  beams,  and  flexural-torsional  buckling  of  columns;  and  at  the  cross-section 

level with (flange/web) distortional buckling. The theory for the elastic torsional response 

of  thin-walled  open  sections  was  developed  by  Vlasov  [1]  and  utilized  by  Timoshenko 

[2] and others, and remains the primary tool for design prediction methods (see [3], [4] 

and [5]). 

 

In the classical theory [3,4] torsion (T) is resisted by shear (Tsv) and by shear related to 

restrained warping (Tw): 

 

 T=Tsv+Tw=GJ′θ−ECw ′′′θ  (2-1) 
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where, G is  the  shear  modulus, J is  the  St.  Venant  torsional  constant, E is  the  elastic 

modulus, Cw is  the  warping  torsion  constant,  and θ is  the  angle  of  twist  (and  ’  denotes 

derivatives). For thin-walled cold-formed steel sections, as discussed further in the next 

section, the shear contribution (Tsv) and related shear stresses (τt) are relatively small and 

the dominant resistance develops from warping restraint (e.g., see [6]). Warping restraint 

creates  longitudinal  (σw)  and  shear  stresses (τw) in  the  cross-section. The  longitudinal 

stresses,  which  are  the  primary  contributor  to  instability  and  degraded  strength  in  thin-

walled members, may be determined from: 

 

 σw=Eω ′′θ =Bω/Cw (2-2) 

 

where ω is the sectorial coordinates, and B is the bimoment. Warping stress σw may be 

found directly through differentiation of the twist ([3], [4], and [5]), or through B, which 

develops in the section as it responds to torsion, T, and is available from numerical beam 

finite element solutions (e.g. MASTAN [7], [8]). The shear stresses due to warping vary 

around the cross-section according to: 

 

 
τw=−

ESw ′′′θ

t
 

(2-3) 

 

where Sw is the warping static moment, and t is the thickness of the member. The shear 

stresses due to St. Venant torsion vary through the thickness, per: 
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 τt=Gt′θ (2-4) 

 

Research on cold-formed steel beams in torsion demonstrated the detrimental role of the 

torsional response on bending strength and the importance of including this response in 

design [9]. Analysis demonstrates that the torsional warping stresses change significantly 

as the  beam  twists  and  are  highly  sensitive  to  the  end  boundary  conditions  [10]. 

Exploration of the stability of the section further indicates that cross-section buckling is 

also sensitive to the longitudinal warping stresses that develop in the twisted section [10]. 

For  the  common  case  of  a  cold-formed  steel  beam  with  restraint  on  one  flange  the 

torsional stresses that develop are even more complex, but their correct inclusion can aid 

design ([11], [12], and [13]). Research provides significant insight on torsional response 

of cold-formed steel members, but less has been done to examine torsion in isolation for 

cold-formed steel members – the approach that has long been used to understand axial, 

bending, and shear actions. 

 

In  cold-formed  steel  design  the  basic  philosophy  is  to  try  to  eliminate  torsion  to  the 

greatest  extent  possible.  For  example,  AISI-S100  [5]  provides  prescriptive  bracing 

criteria  to  limit  torsion  in  beams.  When  torsion  must  be  considered, design  directly  or 

indirectly  applies  stress-based  interaction  expressions  to  limit  the  impact  of  torsion. 

Eurocode [14] limits the total longitudinal stress from all actions, including torsion, to be 

less than the yield stress, Fy (divided by a partial safety factor). AISI-S100 [5] employs a 

reduction factor, R, on bending strength to account for bending-torsion interaction, where 
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R is the ratio of the maximum bending stress to the combined bending (σb) plus warping 

stress (σw), i.e.: 

 
R=

σw( )
max

σb+σw
≤1.0 

(2-5) 

The  resulting  reduction, which  is  applied  to  the  bending  capacity  calculated  without 

consideration of torsion, provides a reduction similar to a longitudinal stress-based linear 

interaction  equation.  The  dominance  of  a  stress-based  approach  to  account  for  a  limit 

state (torsion) is unusual in modern design where strength-based limit states are used for 

all other actions.  

 

The approach taken in this chapter is to explore basic aspects of torsion in cold-formed 

steel  members  first  from  a  review  of  classical  elastic  response,  then  from  a  pilot  set  of 

experiments  at  a  single  length,  and  finally  from  companion  shell  finite  element  models 

that  extend  into  the  nonlinear  geometric  response  and  yielding.  Torsional  response  in 

buckling, initial yielding, and full plastification are all explored. Ultimately, the goal is to 

provide  strength-based  expressions  for  the  prediction  of  torsional  limit  states,  when 

warping  torsion  dominates  the  response,  that  can  be  integrated  into  design  through 

appropriate interaction equations. 

2.3 Classical Elastic Torsional Response in Cold-Formed Steel Members 

While  it  is  generally  understood  that  thin-walled  open  members,  such  as  those  used  in 

cold-formed steel applications, rely on warping to restrain torsion the extent to which this 

is true and the conditions under which this is true are less well understood. Distribution of 
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torsion between Tw and Tsv is dependent on cross-section properties, boundary conditions, 

and the member length.  

 

To illustrate, consider the torsional response of a 400S162-54 [345 MPa (50 ksi)] cold-

formed  steel  member  (nomenclature  per  AISI-S200  [15]).  Two  cases  with  midspan 

torsion  applied,  as  illustrated  in  Figure  2-1  are  considered:  torsionally  supported – 

warping-free  (i.e.  the  ideal  fork  type  boundary  conditions),  and  torsionally  supported – 

warping-fixed. The members are modeled in MASTAN [8] and the results post-processed 

in terms of the warping torsion (Tw) diagram and provided in Figure 2-2 for a series of 

different L/H ratios, where L is the member length and H is the cross section depth (i.e. 

100mm (4 in.)). The L/H ratio is varied between 2, consistent with a well-braced framing 

member, to 20 a large torsionally-unbraced span. The response, provided in Figure 2-2b, 

indicates that at the midspan and at the fixed end of a warping-fixed beam Tw dominates 

response. In a warping-fixed beam Tw is a minimum at the ¼ points, but even for L/H as 

high  as  20, Tw still  dominates  response  (Figure  2-2b).  For  a  beam  with  warping 

continuity, but warping-free at its ends, Tw is a minimum at the ends, as shown in Figure 

2-2a.  In  this  case, Tw is  still  as  much  as  80%  of  the  total  torsion,  but Tsv plays  an 

important role. 

 

The  selected  member  cross-section  dimensions  influence  the  results  and  this  may  be 

captured  by  considering the  non-dimensional  variable α  =  ECw/(GJL
2) as  a  means  to 

classify the section. For our typical 400S162-54 cold-formed steel section with L/H=6, α 

= 5.34. Figure 2-3 provides the warping torsion diagram response for α from 1 to as small 





 20 

  

(a)  (b)  

Figure 2-3. Diagram of restrained torsion along member length for different α: (a) torsionally supported – 
warping-free and (b) torsionally supported – warping-fixed 

 

Systematic study of the ratio of warping torsion (Tw) to the total torsion (Tw + Tsv) across 

a broad range of cross-sections (α‘s) at three key locations: midspan in the warping-fixed 

case, ¼ span in the warping-fixed case, and at the member ends in the warping-free case 

are provided in Figure 2-4. Histograms of the α at L/H of 2 and 20 for all commercially 

available structural cold-formed steel lipped channel members in North America [15] are 

also provided in Figure 2-4. (For L/H of 2 and 20 the 400S162-54 of Figures 2-2 a and b 

has an α of 48 and 0.48, respectively.) Figure 2-4 indicates that for the vast majority of 

cold-formed steel members and boundary conditions Tw dominates the elastic response. 

Only  for  warping-free  members  with  long  unbraced  lengths  (high L/H)  does Tsv play  a 

significant role. 
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Figure 2-5. Stress analysis of 400S162-54 under torsion (a) warping longitudinal stress (b) warping shear 
stress (c) pure shear stress  (note: B=3.44N-m2 is equivalent to a mid-span T of 1.15 N-m in the 400S162-

54 with L of 0.61 m.) 

 

The  maximum  warping  stress  (σw)  in  the  cross  section  is  compared  to  the  von  Mises 

stress (σeff) along the member for the 400S162-54 at L/H= 6 for the studied torsion cases 

in Figure 2-6. For warping-fixed end conditions, σw is a reasonable estimate of σeff except 

near the ¼ point, where stress is low. Even for warping-free end conditions, only at the 

member  ends,  where σeff is  attributable  to τw and τt alone  is  their  significant  error – 

generally σeff is  dominated  by σw and specifically  this  holds  true  at  maximum  stress 

locations. 

 

For cold-formed steel sections warping torsion is more likely to dominate response than 

St.  Venant  torsion.  However,  the  elastic  stresses  developed  in  the  classical  theory  are 

based  on  the  undeformed  cross-section,  and  provide  no  insight  on  what  happens  after 

yielding. 

!

!
! !

! B=3.44N·m2! Tw=5.56N·m! Tsv=0.13N·m!

! σw!
(MPa)!

τw!
(MPa)!

τt!
(MPa)!

a! -1.00 0.00 1.00 
b! -0.52 -0.67 1.00 
c! -0.00 -1.00 1.00 
d! 0.47 -0.77 1.00 
e! 0.00 0.22 1.00 

Note: B=3.44N-m2 is equivalent to a mid-span T of 1.15 N-m in the 400S162-54 with L of 0.61 m. 
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(a)  (b)  

Figure 2-6. Cross-sectional maximum stress distribution along the member under torsion: (a) warping-fixed 
boundary condition and (b) warping-free boundary condition 

 

2.4 Pilot Experiments in Torsion 

A  small  experimental  pilot  study  was  conducted  to  explore  torsion  on  the  behavior  of 

cold-formed steel lipped channels dominated by warping torsion, and loaded past initial 

yield.  The  tests  employed an  MTS  tension-torsion rig with  hydraulic  grips.  The 

specimens consisted of cold-formed steel lipped channel sections with welded end plates 

and a circular shaft inserted into the grips as shown in Figure 2-7. Specimens were held 

constant  in  the  axial  direction  and  twisted  to  approximately  45  degrees  with  actuator 

torsional moment and angle of twist recorded. The bottom grip, per Figure 2-7, applied 

the twist to the specimen while the top remained fixed. 
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Figure 2-7. Torsion testing of cold-formed steel lipped channel: untwisted specimen in rig 

 

2.4.1 Test Specimen and Loading Protocol 

The  specimens  were  cut  from  a  single  6.7  m  long  punched  400S162-54  [50 ksi] stud 

(nomenclature per AISI-S200 [15]). This cross section was chosen based upon material 

availability, but represents a common depth, 102 mm (4 in.), thickness, 1.37 mm (0.054 

in.), and grade 345 MPa (50 ksi), for load-bearing wall studs in cold-formed steel light 

frame  construction. A  tensile  coupon  was  taken  from  the  web  of  the  stud  and  testing 

conducted  per  ASTM  [16] with  the  result  provided  in  Figure  2-8, the  measured  yield 

stress is 373 MPa (54 ksi) per the 2% offset method.  
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Figure 2-8. Experimental tensile stress-strain relationship for coupon cut from 400S162-54 [50 ksi] 

 

As  detailed  in  Figure  2-9  the  typical 304.8  mm  (12  in.)  long  specimens,  had  steel  end 

plates,  6.4  mm  (0.25  in.)  or  25.4  mm  (1  in.)  thick,  welded  to  the  ends.  In  addition,  to 

connect to the grips of the torsion rig, 25.4 mm (1 in.) diameter steel shafts were welded 

to the end plates. The shafts were aligned with the cross-section centroid. Based on as-

built measurements, error in this alignment was within 2.5% of ideal. 

 

Figure 2-9. Typical test specimen, plan view showing (a) basic designation, and (b) size and location of end 
plates and (c) elevation view of stud, end plate, and shaft 
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Specimens were monotonically loaded to a twist of 45 degrees at a rate of 0.025 degrees 

per second. Once a 45-degree twist was achieved, the specimen was unloaded at a rate of 

0.75 degrees per second. Basic test parameters are summarized in Table 2-1. Tests b-d, 

identical  save  for  the  load  rate  in  test c,  establish  a  core  set  of  results  for torsional 

response of a section with approximately rigid end conditions. 

Table 2-1. Test details and basic response for torsion tests 

 
 

2.4.2 Experimental Result 

Results for  the  experimental  testing  are  shown  in  Figure 2-10,  and  the  moment  at 

maximum  torsion  and  its  corresponding  rotation  are  provided  in  Table  2-1. All  of  the 

specimens are able to undergo large twist rotations (at least ~ 30 deg.) prior to reaching 

their peak torsional moment. The specimens with thicker (25.4 mm [1 in.]) end plates (b, 

c, d) had stiffer response than that with thinner (6.4mm [0.25 in.]) end plates. Nominally 

identical  specimens  (b,  c,  and  d) share  a  common  elastic  stiffness,  similar  rotations  at 

failure,  but  modestly  different  peak  torsional  moments. Observed failure  modes  for 

representative specimens are provided in Figure 2-11. The specimen with a thin end plate 

(6.4 mm [0.25 in.]) experienced significant end plate deformations as a result of warping 

deformations generated  by the  specimen  in  torsion  (Figure  2-11(a)).  The  warping 

boundary condition for the thin end plate is semi-rigid. Specimens with 25.4 mm (1 in.) 

ID1 Length End Plate ΤΤu θθ@Tu 

 (mm) (mm) (kN-m) (deg.) 

a 304.8 6.4 0.63
4
 45.0

3
 

b 304.8 25.4 0.62 34.0 

  c
2
 304.8 25.4 0.64 31.6 

d 304.8 25.4 0.70 29.2 

1. 400S162-54 [50 ksi] stud, nomenclature per [16, 18]. 
2. Loaded at faster rate:  see [17] for detail. 
3. Maximum rotation tested = 45 degrees. 
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end  plates experienced  inelastic  lip  local  buckling  past  yield  (Figure  2-11(b)  and 

ultimately, failed in the weld between the channel and the end plate (Figure 2-11(c)). This 

is considered indicative of a warping-fixed end boundary condition. The tested specimens 

were all of a relatively short length and dominated by warping response. 

 

Figure 2-10. Load-displacement of test results 

 

 

Figure 2-11. Observed deformations and failure (a) test a, significant distortions in end plates, (b) test b, 
inelastic lip local buckling, (c) test c, inelastic lip local buckling followed by fracture along the opposing 

weld 
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2.5 Shell Finite Element Model of Experiments 

Shell  finite  element  models  motivated  from  the  tests  were  developed  and  conducted  in 

ABAQUS [19]  to further evaluate  the  test  results  and provide  an  estimation  of  the 

internal  stresses  developed  under  torsion.  Specifically,  this  section  provides  the  basic 

model  characteristics,  comparison  with  the  conducted  experiments,  and  the  spread  of 

plasticity through the section under twist. 

2.5.1 Model Characteristics 

To  model  the  cold-formed  steel  stud the ABAQUS S4R  shell  element  was  used.  When 

applicable the end plate and shaft were modeled with the C3D8R solid element. Typical 

finite element meshes are shown in Figure 2-15.b. 

 

End  boundary  conditions  play  a  particularly  important  role  in  the  response,  and  three 

distinct models are explored in this regard: (i) test model, essentially true to the testing 

apparatus; (ii) fully fixed model, providing an idealized upper-bound response; and (iii) 

idealized  warping-fixed  model,  creating  conditions  consistent  with  classical  warping 

torsion theory. As depicted in Figure 2-12, in the test model, Figure 2-12(a), both the end 

plate and loading shaft are added to the stud.  For the fully fixed model, Figure 2-12(b), 

one end of the stud is coupled to a reference point with all six degrees of freedom fixed, 

while  the  other  end  of  the  stud  is  coupled  to  a  reference  point with five  degrees  of 

freedom fixed (only the torsion/twist degree of freedom where the twist action is applied 

is free). For the idealized warping-fixed model, as shown in Figure 2-12(c), the ends of 

the stud are tied to a reference point at the centroid, but only torsional moment is allowed 

to  develop  all  other  forces/reaction  are  released  (this  is  accomplished  by  allowing 
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Imperfections and residual stresses were not considered in the models. Initial geometric 

imperfections play a modestly reduced role in the response of the tested specimens due to 

the  large  rotations  (>10  degrees)  that  exist  prior  to  local  buckling  initiation.  Residual 

stresses,  both  from  forming  and  welding,  deserve  future  study.  The  model  does  not 

consider fracture. 

 

Two variations on the tested specimens were examined to understand model sensitivity: 

(i)  offset  in  the  loading  shaft,  and  (ii)  torsional stiffness  of  the  loading  shaft.  To 

understand  the  impact/sensitivity  to  errors  when  welding  the  loading  shaft  to  the  end 

plate  a  +/- 6.4  mm  offset  was  considered.  To  vary  the  stiffness  of  the  loading  shaft  its 

diameter was varied from 12.7 mm (1/2 the tested diameter, or 1/16th the actual J) to 63.5 

mm (2.5 times the tested diameter, or 39 times the actual J). 

2.5.2 Comparison with Experiments 

The torsion-twist response of the developed finite element models are compared with the 

tests with the thick end plate (25.4 mm, Test a) and the thin end plate (6.4 mm Test c) in 

Figure 2-13. The “fully-fixed” model is unrealistically stiff and strong indicating the end 

plate  and  loading  shaft  (though  stiff)  contribute  meaningfully  to  the  as-measured 

response. The “test model” with the end plate and loading shaft explicitly modeled gives 

results that are most comparable to the testing prior to fracture (< 30 degrees for the thick 

end plate, and < 40 degrees for the thin end plate). 
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(a) (b) 

Figure 2-13. Torsional moment-angle relationship for:(a) 25.4 mm endplate model (b) 6.4 mm endplate 
model 

 

  

(a) (b) 

Figure 2-14. Loading shaft effect on FE result: (a) offset effect; (b) diameter effect 

 

The  impact  of  shaft  offset  and  torsional  rigidity  is provided  in  Figure  2-14  (a)  and  (b) 

respectively  in  comparison  with  Test  6.  Including  a  small  shaft  offset  increases  the 

accuracy of the initial stiffness prediction, and provides a small measure of scatter in the 

torsional  moment.  In  effect  the  offset  is a  useful,  small  imperfection  in  the  model.  The 

studied shaft diameters provide a variation in shaft torsional rigidity (J) from 0.0625 to 

39 times the actual shaft J. The response thus ranges from nearly fully dominated by shaft 
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twist to the fully fixed case, as shown in Figure 2-14(b). One must take care with using 

the  shaft  diameter  as  a  simple  end  torsional  rigidity  proxy  since  the  model  uses  solid 

elements for the shaft and thus influence the end plate rigidity. 

2.5.3 Characterization of Cross-Section Yielding and Plasticity  

The torsion-twist response is initially elastic, but large deformations and yielding lead to 

a softening in the response. It is common in design to use elastic stress predictions and 

first  yield  criterion  for  torsion,  here  we  explore  the  extent  of  observed  yielding  in  the 

modeled  section  under  twist  to  determine  the  limits  of  these  common  approaches. 

Consider  the  torque  at  which  first  yield  occurs:  in  the  developed  shell  finite  element 

model one can determine the first integration point in an element in the stud in which the 

von  Mises  stress  max(σeff)  = Fy.  The shell finite  element model  includes  the  full  three-

dimensional  state  of  stress  resulting  from  warping,  shear,  and  even  local  plate  bending 

and end effects developed in response to torsion. In the model first yield occurs at the end 

cross section due to warping restraint at the ends. 

 

To examine yielding, consider the torsion-plastic strain response for the “test model” and 

“fully  fixed”  model  as  provided  in  Figure  2-15.  For  comparison,  max(|σw|) = Fy =  373 

MPa at T = Tw = 0.2 kN-m by classical theory. The end conditions have a clear impact on 

the  observed  torsional  moment  and  plastic  strain.  However,  for  all  cases  the  torsional 

moment,  even  for  a  small  limiting  peak  plastic  strain  of  e.g.  1%,  is  nearly  double  the 

torsional moment at which yielding initiates in the model. Significant torsional inelastic 

reserve is observed. Figure 2-15(b) provides a prediction of the developed plastic strain 

and deformed shape, deep into the inelastic reserve in torsion. 
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(a) (b) 

Figure 2-15. Plastic demands in models (a) peak plastic strain – torsional moment relationship; (b) plastic 
strain locations in deformed geometry of “test model” with 25.4 mm end plate 

 

To  more  fully  explore  the  inelastic  reserve,  consider  yielding  in  the  cross-section  as 

opposed  to  just  the  peak  plastic  strain.  First,  consider  a  simple  indicator  function  for 

yielding in element j: 

 
 

(2-7) 

 

where, εp
 
is the effective plastic  strain at  mid-thickness  of  the  shell  element. Thus,  the 

yielding must be through the thickness not just on the surface. This partially mitigates the 

influence of local plate bending on the measure. Plastification of a cross-section is then 

defined by: 
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(2-8) 

 

where, Ij, is the plasticity indicator for element j in a cross section; and N is the number of 

elements around the cross section. The plastic cross section ratio, P, is 0 when the cross 

section  is  elastic  and  1  when  the  cross  section  is  fully plastic.  Figure  2-16 provides 

predicted P for  the  end  and  middle  cross-sections as  a  function  of (a)  rotation, and  (b) 

torsional moment. Plasticity initiates at the ends and continues to be greatest at the ends 

throughout  the  twist.  Significant  twist  is  required  to approach  full  plastification  of the 

section;  however  75%  of  the  end  section  is  plastified  by  a  twist  of  10  degrees. The 

deformed shape and plastic strain for the model provided in Figure 2-15(b) is shown as � 

in Figure 2-16(a) and Figure 2-16(b). 

  

(a) (b) 

Figure 2-16. Loading shaft effect on FE result: (a) offset effect; (b) diameter effect 
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2.6 Idealized Warping-Fixed Shell Finite Element Model for Torsion 

The  testing  model  required  the  addition  of  end  plates  and  a  loading  shaft  to  the 

specimens. The result, as depicted in Figure 2-12(a), is that secondary bending moments 

and  shears  can  develop  as  the  member  is  twisted.  In  the  “fully  fixed”  limit,  Figure  2-

12(b), the warping fixity is complete, and the secondary bending moments and shears are 

maximized.  In  this  case  the  secondary  stresses  are  large,  and  even  for  small  deflection, 

the  elastic  stress  response  is  in  poor  agreement  with  classical  Vlasov  torsion  unless  all 

secondary  stresses  are  explicitly  included.  The  objective  of  this  work  is  to  investigate 

torsion in isolation, so a third “idealized warping-fixed” model, Figure 12(c), is pursued 

in this section and used for subsequent parametric studies. This model allows bending to 

occur, but restricts warping, by restraining the member ends to remain in a rigid plane, 

but allowing that plane to twist (thus releasing the end moments, except for torsion).   

 

The  elastic  longitudinal  stresses  (σz)  that  develop  in  the  idealized  warping-fixed  shell 

finite element model are compared with the classical Vlasov warping theory in Figure 2-

17. The σz from the shell finite element model are extrapolated to the nodes at the mid-

thickness of the shell elements. The σw for the classical theory are determined via Eq. 2-2 

which  is  implemented  by  finding  the  bimoment  at  the  end  from  a  beam  finite  element 

model ([7], [8]) and numerically determined ω and Cw [20]. The basic stress distribution 

is similar in both models, and the peak stress location is the same in both models, but the 

stresses  in  the  shell  finite  element  model  are  generally  slightly  lower  (reflecting  the 

additional  flexibility  of  the  non-rigid  cross-section)  resulting  in  a  slightly  higher 

prediction of the torque at which first yield occurs. 
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(a) (b) 

Figure 2-17. Longitudinal stress distribution at yielding torque (Ty=0.2 kN-m) from (a) classical Vlasov 
theory and (b) idealized warping-fixed shell FE model at the end cross-section 

 

The torsion-twist response for the idealized warping-fixed model of the 400S162-54 with 

a length of 304.8 mm is compared with the fully fixed model and test results in Figure 2-

18(a).  The  idealized  warping-fixed  model  provides  the  most  conservative  estimation  of 

the response: Tu = 0.48 kN-m and θ = 5.4 degrees at Tu. The deformation and developed 

plasticity at Tu are provided in Figure 2-18(b). Based on these results, it is included that 

the  idealized  warping-fixed  model  is  most  appropriate  for  exploring  the  strength  in 

(isolated) torsion. 
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(a) (b) 

Figure 2-18. (a) Torsional moment-angle curve for fully fixed model and idealized warping-fixed model; 
(b) Idealized warping-fixed FE model in ABAQUS 

 

2.7 Development of Direct Strength Method for Torsion 

The Direct Strength Method of cold-formed steel member design [5], [21] has shown that 

slenderness,  with  due  consideration  of  both  member  and  cross-section  buckling  modes, 

may  be  used  to  predict  member  strength  in  axial,  bending,  and  shear  actions.  Similar 

relationships do not exist for torsion, and are investigated herein. The idealized warping-

fixed  shell  finite  element  model  is  used  to  provide  “exact”  predictions  of  ultimate 

torsional  capacity.  Torsional  slenderness  is  then  used  to  develop  “approximate” Direct 

Strength predictions appropriate for use in design. 

 

Torsional slenderness is defined as  

 

  (2-9) 
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where Ty is  the  torque  at  first  yield  and Tcr is  the  critical  elastic  torsional  buckling 

moment,  considering  plate  buckling. Ty is  most  rigorously  defined  as  the T when σeff = 

Fy;  however,  for  cross-sections  dominated  by  warping  torsion  response Ty may  be 

approximated  by Twy,  i.e.  the T when  max(|σw|) = Fy.  The  torsional  elastic  buckling 

moment Tcr may be determined from the shell finite element model, or approximated with 

other  methods  as  discussed  later  in  this  section.  For  the  304.8  mm  long  400S162-54  at 

Fy= 373 MPa, Ty= 0.21 kN-m as reported in Figure 2-17, and Tcr for selected modes of 

the shell finite element model are provided in Figure 2-19. 

 

     

1st mode 

Tcr/Ty= 7.47 

2nd mode 

Tcr/Ty = 7.76  

3rd mode 

Tcr/Ty = 9.08 

4th mode 

Tcr/Ty = 10.45 

5th mode 

Tcr/Ty =10.53 

Figure 2-19. Buckling modes and critical torque for idealized warping-fixed shell finite element model 

 

2.7.1 Parametric Study 

To  explore  the  relationship  between  torsional  slenderness, λT and  strength,  a  small 

parametric study is conducted. In the study λT is varied from 0.25 to 2.5 for four different 

physical  lengths  all  completed  with  the  400S162-54  cross-section,  by  varying  the  yield 
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stress as summarized in Table 2-2. The basic torsion-twist results, for the studied sections 

are provided in Figure 2-20. By varying the physical length the elastic stiffness is varied 

and by varying the yield stress the ultimate torsional strength is varied. The end result is 

that a wide variety of strength responses from elastic, to nearly fully plastic, are realized 

in the studied models. 

Table 2-2. Summary of parametric variation for 400S162-54 section 

  

 
α= Tu 

L  Tcr ECw/(GJL
2)[1] min max 

(mm) 
 
(kN-m) 

 
(kN-m) (kN-m) 

152  4.92 21.4 0.31 30.7 

229  2.92 9.5 0.18 18.2 

305  1.90 5.3 0.12 11.9 

457  1.26 2.4 0.08 7.9 
            [1] consistent with Figure 2-4, for α, L is defined here as twice the model length 

 

Figure 2-20. Torsional moment-angle curve for idealized models with different torsional 

 

For  each  of  the  studied  shell  finite  element  models Ty and Tcr are  determined. Ty is  the 

applied torque at which the first yielded element occurs in the shell finite element model 

and Tcr is  the  first  positive  buckling  moment  from  eigen-buckling  analysis  of  the  shell 
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finite  element  model. The observed  peak  strength  (Tu)  is  examined  as  a  function  of 

torsional  slenderenss  in  Figure  2-21  for  the  studied  sections.  The  results  indicate  that 

significant torsional inelastic reserve is common, but lipped channels which are globally 

slender in torsion have only limited elastic post-buckling. 

 

Figure 2-21. Direct Strength Prediction curve for members under torsion, exact solution for Ty and Tcr 
 

2.7.2 Design Expressions 

As  provided  in  Figure  2-21,  two  possible  design  expressions  are  postulated:  a  two-part 

expression (Prediction I) that is quadratic in the inelastic reserve regime and asmytpotes 

to  the  elastic  bucking  solution  for  large  global  slenderness  regime;  and  a  two-part 

expression (Prediction II) that is linear throughout the inelastic reserve regime and then 

asymptotes to the elastic buckling solution. The expressions are as follows: 

Prediction I: two-part with quadratic inelastic reserve 
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For  

    (2-10) 

For  

  (2-11) 

 

Prediction II: two-part design expression with linear elastic reserve 

For  

  (2-12) 

For  

  (2-13) 

 

The test-to-predicted ratio (P) for Prediction I is 1.19 with a coefficient of variation (VP) 

of 0.19. Based on the reliability procedures outlined in Chapter F of AISI-S100 [5] for a 

reliability index β=2.5 this implies an LRFD resistance factor φ=0.84 or and ASD safety 

factor of Ω=1.9. Prediction II has a P of 1.13 with a VP of 0.21 and therefore a φ=0.83 or 

Ω=1.9.  For  the  studied  sections  either  method  is  acceptable  in  design.  Prediction  II  is 

consistent  with  the  simplified  method  adopted  for  inelastic  reserve  in  beams  in  AISI-

S100 [5]; however Prediction I has a smaller COV and places a more conservative limit 

on the maximum torque, and is generally recommended. 

2.7.3 Implementation in Design 

To implement the prediction method the engineer must be able to quickly provide Ty and 

Tcr.  Although  approximate,  it  may  be  sufficiently  accurate  to  determine  classic  Vlasov 

warping stresses due to torsion (σw) and set Ty as the torque at which max(|σw|) = Fy. The 

warping stresses may be found using classical methods [3, 4, 5] or numerical methods [7, 
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8, 20]. If a shell finite element model is available it may be used for determining Tcr, in 

the absence of such a model we have investigated the use of the computationally efficient 

semi-analytical finite strip method (FSM) as implemented in CUFSM [22]. 

 

For the 400S162-54 the warping stresses that cause first yield in the section are generated 

and applied as the reference stress for an elastic buckling analysis. The signature curve 

results are provided in Figure 2-22. Three buckling modes are postulated by the signature 

curve  analysis:  lip  local  buckling,  flange/web  local  buckling,  and  distortional  buckling. 

The  first  two  modes  are  observed  in  the  shell  finite  element  model,  but  at  different 

buckling  torques.  These  two  buckling  modes  are  compared  to  the  shell  finite  element 

solutions  of  a  304.8mm  long  model  with  idealized  warping-fixed  end  boundary 

conditions in Table 2-3. The FSM model presumes constant longitudinal stress, while in 

reality the longitudinal warping stress varies linearly along the length of the member with 

maximum values of opposing sign at the member ends. As a result of this variation the 

distortional buckling mode identified in the signature curve is not relevant since it has a 

long buckling length. 

 

The  implementation  employed  for  the  semi-analytical  finite  strip  method  [21]  contains 

three serious simplifications for use in this application: (1) constant longitudinal stress (2) 

warping-free end conditions, and (3) no influence from shear stress. Assuming constant 

longitudinal stress is conservative, and one must consider the length of the stress gradient 

vs.  the  length  of  the  buckling  mode  to  determine  the  severity  of  this  simplification. 

Typically local buckling is unaffected by stress gradients – and this is largely true even in 
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this case; however, other buckling modes generally require some consideration of stress 

gradient. Assuming warping-free end conditions when the applied stresses are based on 

warping-fixed  end  conditions  is  inconsistent  and  may be  presumed  as  a  coarse  design 

approximation  at  best.  The  last  4  columns  of  Table  2-3  provide  the  FSM  solutions  for 

clamped,  warping-fixed,  end  conditions.  The  model  still  assumes  constant  longitudinal 

stress, so even this remains conservative, and Tcr is further elevated by these conditions. 

The  last  assumption,  ignoring  the  shear  stress,  is  unconservative  and  recent  work 

provides a means to include this aspect in the context of the semi-analytical FSM [23]. 

 

Figure 2-22. Signature curve in CUFSM for member under torsion 

 

If Ty is defined by Vlasov’s warping stress, and Tcr by the lip local buckling mode from a 

signature curve finite strip analysis then the parametric study results may be revisited. For 

these approximate solutions the strength as a function of slenderness is slightly modified, 

as  provided  in  Figure  2-23  and  the  statistics  for  Prediction  I  and  II  are  also  modified. 

Prediction I has P=1.26, VP=0.22, and φ=0.84 for β=1.9, while Prediction II has P=1.26, 
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VP=0.22,  and φ=0.84 for β=1.9.  The  approximate  methods  for Ty and Tcr determination 

are adequate for design. 

Table 2-3. Comparison of elastic buckling solutions 

 

 

Figure 2-23. Direct Strength Prediction curve for members under torsion employing approximate solution 
for Ty and Tcr  to evaluate the slenderness 

 

 Shell FE2 Finite strip method3 (constant longitudinal stress) 
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2.7.4 Limitations and Future Work 

The  work  presented  herein  is  a  limited  investigation  of  torsion  in  cold-formed  steel 

members.  Significant  work  remains  to  develop  a  robust  means  of  handling  torsion. 

Although thin-walled members are dominated by warping torsion, additional cases (e.g. 

due  to  thickness,  end  boundary  conditions,  etc.)  where  the  contribution  of  St.  Venant 

torsion  is  non-negligible  need  further  study.  The  potential  longitudinal  variation  of 

warping stresses (i.e. variation in bimoment) is significant in structural applications, e.g. 

a floor joist loaded away from its shear center has a much different longitudinal warping 

stress distribution than the twisted member studied here. Systematic study of the impact 

of  this  variation  (i.e.,  stress  gradient)  is  needed  to  understand  the  impact  on  buckling 

modes and on yielding. Simplified methods are needed for predicting torque under partial 

or full plastification. The lack of a simplified calculation for plastic torque in thin-walled 

members  leads  to  the  type  of  gross  simplifications  provided  in  the  currently  developed 

prediction  methods.  Focused  tests  and  models  varying  torsional  slenderness  in  each  of 

local,  distortional,  and  global  buckling  are  needed  to  fully  understand  the  complete 

torsional  strength.  Torsion  in  combined  loading  should  be  revisited  with  the  goal  of 

investigating limit-states based strength interaction equations to replace the stress-based 

expressions  in  current  use  in  design.  Further  testing,  modeling,  and  analytical 

developments are all needed. 

2.8 Conclusion  

Torsional  response  is  fundamental  to  understanding  thin-walled  cold-formed  steel 

members; but beyond classical work on elastic response and prescriptive guidance little is 

available  to  engineers  that  must  consider  either  torsion  or  buckling  modes  undergoing 
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torsion.  Classical  analysis  of  cold-formed  steel  members  indicates  that  they  often  have 

high values of the non-dimensional constant ECw/(GJL
2) and may be often dominated by 

warping  response.  A  small  series  of  torsion  tests  on  a  cold-formed  steel  lipped  channel 

demonstrates that cold-formed steel members can: undergo large twist rotations prior to 

failure, exhibit significant post-yield (inelastic reserve) strength, and are sensitive to end 

conditions.  Complementary  shell  finite  element  models  demonstrate  the  large  extent  of 

plastification  in  a  common  cold-formed  steel  member  undergoing  torsion  and  provide 

further  insight  on  the  sensitivity  to  end  boundary  conditions.  The  end  boundary 

conditions  in  the  torsion  testing  allow  secondary  shears  and  moments  to  develop  at  the 

fixed member ends, therefore an alternative idealized warping-fixed boundary condition 

is  developed  in  the  shell  finite  element  models.  This  idealized  warping-fixed  model 

generates longitudinal warping stresses consistent with classic Vlasov torsion theory and 

is  utilized  to  develop  a  small  parametric  study  on  torsional  strength.  For  sections 

dominated by warping torsion, the study demonstrates that torsional slenderness may be 

used  to  predict  ultimate  torsional  strength,  in  a  manner  consistent  with  Direct  Strength 

Method  design  expressions  previously  developed  for  axial,  shear,  and  bending  actions. 

Simplified  methods  for  calculating  torsional  slenderness  are  explored  and  shown  to  be 

adequate  for  design.  Significant  additional  work  remains  to  generalize  the  results  and 

develop  a  fully  limit-states  based  approach  to  torsional  strength  in  cold-formed  steel 

members,  but  the  completed  work  is  intended  to  provide  proof  that  a  clear path  is 

possible and available. 
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CHAPTER 3  

COMPUTATIONAL  EFFICIENT  FASTENER-BASED  MODELS  OF  COLD-

FORMED STEEL SHEAR WALLS WITH WOOD SHEATHING 

 

3.1 Abstract 

The  lateral  behavior  of  sheathed,  cold-formed  steel  (CFS)  framed  shear  walls  depends 

considerably  on  the  complex  behavior  that  occurs  at  each  fastener  location.  Screw 

fasteners attach the sheathing material to the CFS framing, but relative motion of these 

components creates local damage, resulting in non-linearity at the scale of the entire shear 

wall. A computational model of a CFS shear wall is developed in which each fastener is 

represented by a non-linear, radially-symmetric spring element. The material parameters 

of  the  fastener  element  are  determined  from  physical  tests  of  sheathing-to-stud 

connections  with  small  numbers  of  fasteners.  The  fastener  material  model  includes  a 

softening  backbone  curve,  pinching,  and  loading  and  unloading parameters.  The 

remainder  of  the  model  employs  rigid  sheathing  panels,  beam-column  elements  for 

framing, semi-rigid rotational springs for stud-to-track connections, and springs for hold-

downs.  The  models  are  subjected  to  lateral  cyclic  displacement  histories  using  the 

OpenSees structural analysis software. Thirteen full-scale shear wall tests of two different 

widths are modeled with various construction details related to the ledger track, gypsum 

board,  vertical  and  horizontal  seams,  and  number  and  thickness  of  field  studs.  The 

computational  analyses  are  compared  to  the  full-scale  physical  tests  based  on  load-

displacement  behavior,  lateral  strength,  drift  at  failure,  initial  stiffness,  and  energy 
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dissipation,  and  are  compared  to  specification-based  strengths  and  displacements.  The 

computational  models  provide  detailed  information  on  forces  in  the  framing  members 

and interaction forces at individual fasteners. This fastener-based computational approach 

is able to efficiently reproduce key aspects of the lateral behavior of CFS shear walls. 

3.2 Introduction 

Load bearing cold-formed steel (CFS) structural systems are commonly used for low and 

mid-rise  construction.  Shear  walls sheathed  with oriented-strand  board  (OSB) are 

frequently used as the lateral force resisting system for seismic loads. The current seismic 

design standard for CFS structures in North America [1] allows only specific shear wall 

configurations  based  on  type  and  thickness  of  sheathing,  aspect  ratio, fastener  spacing, 

stud and track thickness, and screw size. The need to perform full-scale cyclic testing on 

all of the shear wall designs allowed by specification limits the possible configurations to 

a relatively small number [2]. Common elements of CFS construction, such as vertical or 

horizontal seams, gypsum wall board, and ledger tracks attached to the studs to allow the 

joists  to  frame  in  at  their  own  spacing,  are  not  accounted  for  in  the  specification-based 

lateral force and deformation values.  

 

The  development  of  performance-based  seismic  design  methods  for CFS structures 

requires the ability to efficiently perform realistic, non-linear computational modeling of 

shear walls with a wide variety of construction details. The computational modeling, of 

course, needs to be supported by specific physical testing at all scale levels, ranging from 

fasteners  to  shear  walls  to  buildings.  The  research  described  in  this  3hapter  develops  a 

computational model for the non-linear lateral behavior of CFS shear walls and validates 
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that  model  against  thirteen  existing  full-scale  cyclic  test  results.  The  key  feature  of  the 

modeling  approach  is  accurate  representation  of  the  non-linear  force-displacement 

behavior  that  occurs  at  each  fastener.  This  fastener-based  shear wall  model  is 

incorporated into the general purpose structural analysis software OpenSees [3]. 

3.3 Behavior of Wood-Sheathed CFS Fastener and Shear Walls 

Previous research on both wood-framed [4, 5] and CFS [6, 7] shear walls has established 

that the interaction between individual  fasteners and  the  sheathing  material  is  a 

significant  factor  in  the  non-linear  response  of  the  shear  wall  as  a  whole.  Since  the 

vertical  framing  members  are  essentially  pin-connected  to  the  horizontal  members,  the 

frame will deform into a parallelogram under lateral loads. The large in-plane rigidity of 

the sheathing will result in the sheathing remaining nearly rectangular in shape, while it 

primarily undergoes rigid body translation and rotation. The incompatibility between the 

deformed shapes of the frame (parallelogram) and sheathing (rotated rectangle) creates a 

relative displacement, or fastener displacement demand, at the location of each fastener. 

The fastener displacement demand must be accommodated by tilting and bending of the 

fastener itself, as well as deformation and damage to the sheathing material immediately 

surrounding the fastener. The ability of a fastener to tilt depends on the relative size of 

the  screw  to  the  CFS  member  thickness;  large  steel  thicknesses  prevent  tilting  and  can 

lead  to  shear  failure  of  the  screws  [8].  CFS  shear  walls  tested  with  lateral  loading 

commonly  exhibit  fastener  failure  modes  such  as  tearing,  pull-through  or  fastener 

fracture,  which  result  from  the  fastener  displacement  demand  imposed  by  the  differing 

deformations of CFS members and sheathing material [9, 10]. 
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3.3.1 Available Characterization of Fastener Response 

The  nonlinear  shear  response  of  a  fastener  connected  through  sheathing  to  steel  can  be 

determined in isolated testing. Motivated from work in sheathing braced design of studs a 

small  test  rig  was  modified  by  Peterman  et  al. [8] and used  to  generate  monotonic  and 

cyclic  response  of  steel-fastener-sheathing  combinations  consistent  with  the  shear  wall 

testing  in [10]. The small scale testing  rig  consists  of  two  standard  studs  in  a  universal 

uniaxial  testing  machine,  attached together  by sheathing using  fasteners.  For  symmetry 

two fasteners are placed between the sheathing and the stud and both faces of the stud are 

sheathed (See [8] for details). Focusing on a single fastener, before and after testing, the 

response for typical tests are provided in Figure 3-1. 

 

  
 

(a) prior to testing (b) pull through (c) monotonic response 

Figure 3-1. Isolated sheathing-fastener-stud testing for shear response (Peterman et al. [8] ) 

 

3.3.2 Pinching04 Model for Fastener Response Fitting 

In  [8]  it  proposed  that  the  shear  response  of  the  stud-fastener-sheathing may  be 

approximated  by  the  pinching04  model  in  OpenSees. Pinching04  model can be  used  to 

model 1D nonlinear behavior, including strength and stiffness degradation for unloading 

and  reloading. To  consider  cyclic  behavior, a backbone  curve,  reloading  and  unloading 
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criteria all need to be defined. Peterman et al. [8] provided these criteria based on their 

test. The backbone curve and four key backbone points for a typical pinching04 response 

are illustrated in Figure 3-2. From a modeling perspective, these four key points (or four 

branches  in  the  backbone  curve)  represent  the  stiffness  degradation for the fastener 

connection in shear. From a performance-based perspective, the origin point to node 1 is 

essentially the elastic range. The fastener tilts but with little to no permanent damage in 

the  OSB. In  the second  branch (pt1 to pt2), some  permanent  damage  occurs  in  the 

sheathing, primarily due to bearing. In the third branch (pt2 to pt3), the bearing damage 

of the fastener shifts against the sheathing begins to engage the head of the fasteners and 

pull-through  initiates  and  further  softening  occurs.  When  the  fastener  pulls  through  a 

significant  amount  of  sheathing,  the  nearing  resistance  lost  and  the  strength  quickly 

degrades. The final branch is the residual capacity of the connection and can approach 0. 

For thicker studs and smaller fasteners it is possible that the second and third branch is 

cutoff  by  shearing of  the  fastener.  For  fasteners  with  small  edge  distance,  it  is  also 

possible  that  the  second  or third  branch  is  cutoff  by  tear  out  in  the  sheathing.  The 

specimens used herein did not suffer from fastener shear or edge tear out- so only bearing 

and tilting followed by pull-through is considered herein. 
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Figure 3-2. Backbone curve for fasteners 

 

3.3.3 CFS Shear Wall Performance 

Lateral deflection of wood-sheathed CFS shear walls may be estimated by Equation C2.1 

of  AISI  S213  [1],  which  includes  three  linear  mechanics-based  deflection  terms 

(cantilever  bending,  sheathing  shear,  hold-down  deformation)  and  one  empirical  non-

linear  term.  For  typical  shear  wall  configurations,  the  non-linear  term  is  the  largest 

contributor  to  the  overall  deflection  and  its  percentage  contribution  increases  with 

increasing load [11].  

 

Several different computational or analytical methods have been used to capture the non-

linear behavior of CFS or wood-framed shear walls. One modeling approach is to use a 

single,  complex  spring  element  to  represent  each  shear  wall  [12,  13].  This  approach 

requires  full-scale  cyclic  test  data  to calibrate  the  spring  element  properties,  but  allows 

for modeling of entire buildings.  A second approach uses finite element models of CFS 

shear  walls  with  non-linear  shell  and  fastener  elements  [14,  15].  In  such  models  the 
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computational  complexity  typically  precludes  modeling  of  full  buildings  or  a  large 

number of different shear wall configurations.  

 

For  wood-framed  shear  walls,  a  fastener-based  approach  has  been  used  to  derive 

analytical  expressions  for  key  response  parameters,  such  as  lateral  strength or  total 

displacement, a detailed discussion of which is provided in Chen [16]. A fastener-based 

modeling approach for the full cyclic behavior of wood-framed shear walls has also been 

incorporated into the nail-pattern analysis module of the SAWS and SAPWood software 

[17, 18], as well as into general purpose finite-element software [5].  

 

For  CFS  shear  walls  fastener-based  analytical  approaches  to  strength  and  displacement 

have  also  been  developed  [19,  20].  These  analytical  approaches  only  estimate  peak 

strengths and deflections and do not attempt to capture the complete monotonic or cyclic 

load-displacement behavior. These analytical approaches also introduce some simplifying 

assumptions, such as rigid framing members with pin-connections or rigid hold-downs.  

 

Fastener-based models of wood-sheathed CFS shear walls are able to capture key aspects 

of  the  non-linear  response  of  the  full  shear  wall  by  accurately  modeling  the  local  non-

linear behavior at each fastener. The fastener-based models include realistic construction 

details,  such  as  the  actual  pattern  of  fasteners,  sheathing  panel  sizes  and  thicknesses, 

seam  locations  and  seam  backing  members.  In  addition,  the  models  accurately  capture 

deformations  and  forces  in  the  studs,  tracks,  ledgers  and  hold-downs.  Fastener-based 

models  can  be  implemented  with  a  minimal  amount  of  empirically  derived  input—
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primarily  non-linear  fastener  behavior—allowing  them  to  be  used  for  a  wide  range  of 

non-standard  construction  details,  as  might  occur  in  retrofit  or  development of  new 

products  or  construction  details.  By  implementing  the  fastener-based  models  within 

OpenSees  additional  analysis  capabilities  are  available,  such  as  combined  gravity  and 

lateral loading or dynamic excitation. The fastener-based approach can be used to assess 

the lateral behavior of the gravity load carrying elements of CFS buildings and the load 

sharing between the gravity and lateral systems. Fastener-based analyses of single shear 

walls provide sufficiently detailed non-linear behavior to allow calibration and validation 

of single, complex spring element models of shear walls that are more commonly used in 

non-linear  analysis  of  full  buildings.  Computationally  efficient  non-linear  analysis  of 

CFS shear walls is ultimately required to advance performance-based seismic design of 

CFS buildings. 

 

3.4 Description of Prototype Shear Wall and Computational Models 

Thirteen different shear wall configurations (Figure 3-3, Table 3-1) were modeled, based 

on full-scale specimens previously tested. Complete details of the design and construction 

of the specimens are provided in Liu et al. [21]; model numbers used herein are the same 

as the physical test specimen numbers. All of the shear walls have a height of 2.74 m, and 

widths  of  either  1.22  m  or  2.44  m.  Walls  4 and  14  represent  the  baseline  wall 

configurations  with  only  CFS  members,  fasteners  and  sheathing,  and  correspond  to  the 

components that  are  directly  accounted  for  in  the  lateral  strength  as  determined  by 

specification.  Walls  2  and  12  include  the  ledger  track;  walls  3  and  13,  gypsum  board 

sheathing (on the face opposite the OSB). Prior experiments used in the development of 

the lateral strength provisions of the design specifications have almost exclusively used 
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specimens  constructed  with  full  1.22  m  x  2.44 m  sheets  of  sheathing.  Construction  of 

shear walls of other dimensions requires both horizontal or vertical seams. Thus, walls 5, 

6  and  10  study  the  effects  of  horizontal  seam  locations;  and  walls  7  to  10,  of  vertical 

seam and field stud locations. Finally, wall 15 examines the effect of field stud thickness. 

 

All fasteners are #8 screws spaced at 15.2 cm on the perimeters of the OSB or gypsum 

panels,  and  spaced  at  30.4  cm  on  the  field  studs.  Hold-downs at  the  chord  studs are 

Simpson  S/HDU6.  At  locations on the  bottom  track where  shear  anchors  (self-drilling 

screws or low-velocity fasteners) would normally be used, the physical tests used 16 mm 

diameter anchor bolts fastened to a steel tube.  

 

The nodes and elements of Model 4 are shown in Figure 3-4; other models are similar in 

arrangement. Studs and tracks are subdivided by a node at every fastener location and are 

modeled by displacement-based  beam elements  with appropriate  cross-sectional 

properties. The full composite section properties are used for back-to-back chord studs. 

The studs are connected to the top and bottom tracks with rotational spring elements to 

allow for semi-rigid connections (Figure 3-4b). The rotational stiffness of the semi-rigid 

connections was estimated to be 11.3 kN-m/rad, based on the measured lateral stiffness 

of bare CFS frames [21].   

 

Each OSB or gypsum board panel is modeled as a separate rigid body (RigidDiaphragm 

in OpenSees), with slave nodes at every fastener location and a master node at the center 

of the panel. This model assumes that the significant deformation in the sheathing occurs 
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element  (CoupledZeroLength in  OpenSees)  with  uniaxial  force-deformation  behavior, 

radially  symmetric  in  the  plane  of  the  sheathing.  Fastener-based  models  often  use  two 

independent  perpendicular  uniaxial  spring  elements,  requiring  approximation  in  the 

inelastic  response; a  single  radially-symmetric  spring  element  avoids  such 

approximations. 

 

The  fastener elements  are  assigned  the Pinching4 material  in  OpenSees  (Figure  3-5), 

which includes a multi-linear backbone curve, cyclic response, pinching, and unloading 

and reloading parameters [23]. The parameters of the Pinching4 material were estimated 

from  small-scale  test  results  of  fastener-sheathing  assemblies,  using  combinations  of 

fastener  size,  fastener  spacing,  sheathing  thickness  and  CFS  member  thickness 

corresponding  to  the  details  of  the  shear  walls  tested  at  full  scale  and  modeled  herein 

(Table  3-2).  A  detailed  comparison  between  the  idealized Pinching4 behavior  and  the 

experimental  results  of  the  fastener-sheathing  assemblies  is  provided  in  Peterman  et  al. 

[24]. With the unloading and reloading parameters in Table 3-2, the Pinching4 model of 

the  fastener  behavior  is  confined  to  the  first  and  third  quadrants,  resulting  in  complete 

pinching  to  the  origin. It  is  important  to  note  that  other  than  the  material response 

parameters of the fastener elements, no other properties of the computational model are 

experimentally determined.	

	

At vertical seams between sheathing panels, two independent fastener elements connect 

the adjacent rigid sheathing panels to a common node on the vertical stud. At horizontal 

seams, the two independent fastener elements are connected to a beam-column element 

representing the seam strap, which is pin-connected to the studs.	
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forces  (Figure 3-4c).  Since  the  depth  of  the  ledger  track  is large  in  comparison  to the 

depth  of the  studs,  bending  moment  will  be  transferred  from  the  ledger  to  the  studs 

through a moment couple of horizontal forces at the locations of the ledger flanges. Thus 

rigid  offset  elements  and  constraints  are  used  to  transfer  horizontal  forces  to  the  chord 

studs at the ledger flange locations. 

 

The model was subjected to the same cyclic lateral displacement history as the physical 

tests,  applied  through  the  center  node  of  the  top  track.  The  cyclic  displacement  history 

followed the CUREE protocol in which each primary displacement cycle is followed by 

multiple trailing cycles of smaller amplitude [25]. The reference, or target, displacement 

(100%  level) for  each  wall  is  based  on  the  measured  monotonic  response  of  the  shear 

walls. The cyclic displacement history also includes primary cycles of 150% and 200% of 

the reference displacement. 

 

	

Figure 3-5. Pinching4 material behavior with parameter definitions for positive branch; negative branch 
symmetric. 
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3.5 Results and Discussion 

3.5.1 Load-Displacement Behavior and Energy Dissipation 

The  complete  cyclic  load-displacement  responses  from  the  computational  models  are 

compared to those from the physical tests in Figure 3-6 for the 1.22 m wide walls and in 

Figure 3-7 for the 2.44 m wide walls. Complete results from the physical testing program 

are  presented  in  Liu  et  al.  [21].  The  computational  models  reasonably  capture  the 

backbone  curve  and  pinching  behavior. The  load-displacement  response  of  the 

computational  models  is  confined  entirely  to  the  first  and  third  quadrants,  because  the 

individual  fastener  behavior  is  similarly  confined  to  the  first  and  third  quadrants.  In 

contrast, the experimental data do exhibit some response in the first and third quadrants. 

 

The  load-displacement  responses  also  show  that  the  computational  models  and 

corresponding  experimental  tests  do  not  always  achieve  peak  lateral  force  during  same 

displacement cycles of the same magnitude (Table 3-1). In most cases, such as for Model 

5,  the  computational model  reaches  its  peak  strength  at  a  smaller  magnitude  target 

displacement cycle than observed in the physical tests (Table 3-1). For Models 6, 9, 10 

and 15, the computational model reaches its peak strength during the same displacement 

cycle  as  the  physical  tests.  Even  in  the  cases  in  which  the  computational  model  and 

physical  tests  reached  peak  strength  during  the  same  displacement  cycle,  the 

computational models tend to fail earlier in that displacement cycle. For example, Model 

6  reaches  its  peak  strength  of  13.5  kN/m  at  a  drift  of  1.93%  during  the  150%  cycle 

(2.76%  target  drift)  and  then  loses  lateral  load  capacity  sharply.  In  contrast,  the 
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experimental specimen continues to carry increasing lateral force until it reaches a drift of 

2.57%. 

 

Detailed comparisons between several primary peak load-displacement cycles are shown 

for Models 2 and 12 in Figures 3-8 and 3-9, respectively. Each figure compares the five 

largest  amplitude  displacement  cycles  from  the  CUREE  protocol  (40%,  70%,  100%, 

150% and 200% of reference drift). Two smaller amplitude cycles occur between each of 

these peak cycles. The comparison of the individual cycles demonstrates that the model 

reasonably  captures  the  overall  hysteretic  behavior  at  a  wide  range  of  imposed 

displacements, from nearly linear behavior to post-peak response. Both Models 2 and 12 

(Figure  3-8)  reached  peak  lateral  force  during  the  positive  branch  of  the  100%  cycle; 

while the corresponding experiments reached peak strength during the 150% cycle.  

Table 3-2. Single fastener Pinching4 parameters for positive branch; negative branch symmetric 

 

The load-displacement cycle plots in Figures 3-8 and 3-9 also report the hysteretic energy 

dissipated in the given cycles. The computational models provide reasonable predictions 

of  the  single  cycle  hysteretic  energy  dissipation,  except  in  the  cycles  for  which  the 

computational model has already failed in a prior peak cycle. For most single cycles, the 

experimental  energy  dissipation  is  larger  than  the  computational  due  to  several  factors. 

ePdi ePfi ePdi ePfi

cm kN cm kN

1 0.051 0.98 0.02 0.22

2 0.198 1.56 0.119 0.44

3 0.625 2.05 0.605 0.53

4 1.052 0.22 1.422 0.53

rDispP

rForceP

uForceP

point i =

OSB Gypsum

Backbone Parameters

0.42

0.01

0.001

0.56

0.01

0.001

Unloading and Reloading Parameters
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First, as mentioned above, the computational model does not capture energy dissipated in 

the  second  and  fourth  quadrants.  Second,  the  experiments  include  sources  of  energy 

dissipation  that  are  not  captured  in  the  computational  models,  such  as  friction  between 

inner faces of the sheathing and the flanges of the CFS members, or edge effects between 

adjacent sheathing panels. 

 

The  final  plot  in  Figures  3-8  and  3-9 provides  the  cumulative  hysteretic  energy 

dissipation  as  a  function  of  peak  drift.  Individual  points  are  plotted  only  at  the  primary 

cycles  of  the  imposed  displacement,  but  include  energy  dissipated  in  the  smaller 

intermediate  cycles.  The  vertical  lines  indicate  the  drift  at  which  peak  lateral  force 

occurred for the computational analyses and the physical tests. The per cycle differences 

between  energy  dissipated  in  the  computational  model  and  experimental  specimens, 

result  in  the  cumulative  computational  energy  always  being  less  than  that  of  the 

experiments.  Nevertheless,  the  energy  dissipation  as  calculated  from  the  computational 

models  may  serve  as  a  conservative  and  useful  lower  bound  for  the  hysteretic  energy 

dissipation in a physical test or real building. For seismic excitation of CFS buildings, the 

shear walls provide a significant source of energy dissipation. The ability to realistically 

reproduce the hysteretic energy dissipation in a computationally efficient model, even as 

a lower-bound, is an important capability for time history analysis of CFS buildings. 
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Figure 3-6. Load-displacement response for 1.22 m wide shear walls, Models 2 to 10. 

 

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20

L
at
er
al 
F
or
c
e 
(k
N/
m)

Model 2

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20
Model 3

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20
Model 4

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20

L
at
er
al 
F
or
c
e 
(k
N/
m)

Model 5

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20
Model 6

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20
Model 7

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20

Drift (%)

L
at
er
al 
F
or
c
e 
(k
N/
m)

Model 8

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20

Drift (%)

Model 9

−4 −2 0 2 4
−20

−15

−10

−5

0

5

10

15

20

Drift (%)

Model 10

Exp. Comp.



 66 

 

Figure 3-7. Load-displacement response for 2.44 m wide shear walls, Models 12 to 15. 
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strength  as  compared  to  the  experimental  results,  with  ratios  ranging  from  0.81  to  0.98 

and  a  mean  of  0.88.  For  Model  15,  the  computational  to  experimental  strength  ratio  is 

1.06. 
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Figure 3-8. Model 2 load-displacement response for five peak cycles and cumulative hysteretic energy 
dissipation. 
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Figure 3-9. Model 12 load-displacement response for five peak cycles and cumulative hysteretic energy 
dissipation. 
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positive direction.  
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Table 3-3. Raw and adjusted lateral strengths and strength rations in positive and negative directions. 

 

 

Models 2 to 4 and 12 to 14 are most representative of typical CFS construction. Models 5 

to  10  of  the 1.22  m  wide  walls  include  variations  in  horizontal  and  vertical  seam 

locations, and all of the 2.44 m wide walls include vertical and horizontal seams. In the 

physical  tests,  edge  bearing  between  sheathing  panels  was  clearly  observed  at  large 

displacements.  The  computational  models  do  not  include  interaction  of  adjacent 

sheathing panels, yet as a group the models with vertical seams have approximately the 

same mean strength ratios as those without the seams. An improved computational model 

could include panel interaction, but would also need to include a means of capturing local 

deformation and damage due to edge bearing forces.  

 

Overall,  the  fastener-based  computational  models  can  effectively  and  conservatively 

predict the cyclic response of the shear walls up to the point of their peak lateral strength. 

Additional lateral strength may be available beyond this point, although it is not captured 

consistently  with  the  present  computational  model.  Many  of  the  computational  models 

fail during a smaller magnitude peak displacement cycle than the physical experiments, 

Comp. Exp.
Exp. 
Adjusted

Comp. / 
Exp.

Comp. / 
Exp. Adj.

Comp. Exp.
Exp. 
Adjusted

Comp. / 
Exp.

Comp. / 
Exp. Adj.

Model kN/m kN/m kN/m -- -- kN/m kN/m kN/m -- --
2 14.3 16.9 13.1 0.84 1.09 -13.3 -15.2 -11.2 0.87 1.19
3 17.6 18.5 15.9 0.95 1.11 -17.1 -14.0 -13.3 1.22 1.29
4 13.4 15.3 13.4 0.87 1.00 -13.4 -14.0 -13.3 0.95 1.01
5 14.0 14.9 12.7 0.93 1.10 -12.9 -13.9 -12.1 0.93 1.07
6 13.5 16.7 15.2 0.81 0.89 -13.3 -13.4 -12.3 1.00 1.08
7 10.5 12.8 10.0 0.83 1.06 -12.2 -13.4 -11.8 0.91 1.04
8 12.3 15.1 13.2 0.81 0.93 -13.1 -13.6 -13.5 0.97 0.97
9 13.2 13.4 10.6 0.98 1.24 -13.1 -13.0 -13.0 1.01 1.01
10 13.6 15.5 12.6 0.88 1.08 -13.5 -13.9 -13.7 0.97 0.99
12 14.9 18.3 16.4 0.81 0.91 -14.2 -15.4 -13.7 0.92 1.04
13 18.5 19.4 18.0 0.96 1.03 -17.3 -16.6 -9.3 1.04 1.86
14 13.6 15.4 15.1 0.88 0.90 -12.4 -14.4 -13.6 0.86 0.91
15 13.6 12.9 12.5 1.06 1.09 -13.5 -12.2 -11.0 1.10 1.23
Mean 14.1 15.8 13.7 0.89 1.03 -13.8 -14.1 -12.4 0.98 1.13
COV 0.14 0.13 0.16 0.08 0.10 0.11 0.08 0.10 0.10 0.21

Positive direction Negative direction
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indicating  that  the  computational  models  are  less  accurately  able  to  capture  peak 

displacements and drift. 

3.5.3 Lateral Displacement and Drift 

Table 3-4 presents the deflections and drifts at peak load in both the positive and negative 

directions. The computational drift at lateral strength varies from 1.33% to 2.84% with a 

mean of 1.82%. The ratio of computational-to-experimental drift ranges from 0.56 to 1.05 

with a mean of 0.70. As discussed above, most of the computational models reach peak 

lateral  load  during  a  smaller  amplitude  displacement  cycle  as  compared  to  the 

experimental specimens, and thus are expected to have a smaller lateral displacement at 

peak load. Models 8, 9 and 10, which include additional vertical seams within a 1.22 m 

wide  shear  wall,  exhibit  greater  drift  capacity  with  little  or  no  decrease  in  strength. 

Similar behavior was observed for these experimental specimens as well. 

3.5.4 Comparison to Specification Values of Strength and Displacement  

The  lateral  strength  of  each  shear  wall  determined  according  to  AISI  S213-07[1]  is 

compared to the strengths from the computational models and experiments in Table 3-5 

and  Figure  3-10.  The  ratios  of  computational-to-specification  strengths,  in  the  positive 

direction, range from 0.86 to 1.44 with a mean of 1.14. This ratio provides a measure of 

the over-strength that exists beyond the specification-based strength. Only for Model 7 is 

the  computational  strength  (10.5  kN/m)  substantially  less than  the  specification-based 

value (12.2 kN/m). Model 7 includes a vertical seam that creates a very narrow sheathing 

panel (0.31 m wide) that is not accounted for in the specification. Although in this case 

the  experimental  strength  (12.8  kN/m)  was  greater  than  both  the  specification  and 

computational  strengths.  The  computational  models  do  not  capture  interaction  between 
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adjacent  panels,  which  is  likely  to  be  more  significant  for  more  walls  with  multiple 

vertical seams or narrow panels. 

 

Comparison  of  displacements  at  the  peak  lateral  strength  calculated  according  to  AISI 

S213-07 [1] and from the computational models (Table 3-5) shows that the specification 

typically  substantially  under-predicts  the  lateral  drift  capacity.  The  ratios  of 

computational-to-specification  displacements  range  from  0.87  to  2.01  with  a  mean  of 

1.33.  Again,  only  Model  7  results  in  a  predicted  lateral  displacement  smaller  than  the 

specification-based  value.  The  experimental  specimens  exhibited  lateral  displacements 

even  greater  than those  from  the  computational  models.  These  results  confirm  the 

previous  conclusion  from  the  experimental  testing  alone,  that  CFS  shear  walls  may 

possess  additional  drift  capacity  beyond  the  specification-based  value,  although  the 

amount  of  additional  drift capacity  varies  widely  [10,  21].  The  computational  models 

provide  a  far  more  accurate  means  to  assess  lateral  displacements  of  shear  walls  as 

compared to the equations provided in AISI S213-07 [1]. 

3.5.5 Lateral Stiffness at Low Force Levels 

Experimental and  computational  values  of  lateral  stiffness  at  low  force  levels  are 

compared in Table 3-6. The low-level computational stiffness is determined from the first 

analysis  step,  and  thus  is  the  true  linear  stiffness  of  the  model.  The  experimental  low-

level  stiffness  is  estimated  in  two  ways  from  the  data.  First,  the  initial  experimental 

stiffness is based on a best fit approximation from the measured force-deflection response 

over  the  first  six  displacement  cycles  of  a  magnitude  of  5%  of  the  reference 

displacement. This low-level experimental displacement should not create any damage to 
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the  specimen,  although  small  amounts  of  hysteresis  do  occur  due  to  the  experimental 

apparatus  and  lack-of-fit.  Second,  the  experimental Pinching4 stiffness  is  based  on  the 

idealization of the experimental load-displacement response of the wall as a whole using 

the Pinching4 model [10]. Thus the Pinching4 initial stiffness in Table 3-6 is the slope of 

the first branch of the backbone curve, which was defined to extend to 40% of the lateral 

strength, consistent with an equivalent energy elastic-plastic model. For most cases, the 

computational  initial  stiffness  is  less  than  the  initial  experimental  stiffness,  and  in  all 

cases  the  computational  initial  stiffness  is  greater  than  the  stiffness  based  on  the 

Pinching4 backbone curve. As the non-linear response in both the computational models 

and experimental specimens begins at relatively low load levels, the lateral strength is not 

greatly affected by small differences in initial stiffness. 

 

Table 3-4. Lateral deflections and drifts in positive and negative directions. 

 

 

Comp. Exp. Comp. Exp. Comp. Exp. Comp. Exp.

Model mm mm % % -- mm mm % % --
2 43 74 1.56 2.70 0.58 -68.9 -35.3 -2.51 -1.29 1.95
3 49 73 1.79 2.66 0.67 -61.8 -42.7 -2.25 -1.56 1.45
4 50 73 1.84 2.66 0.69 -48.9 -50.3 -1.78 -1.84 0.97
5 43 72 1.57 2.62 0.60 -49.8 -35.3 -1.81 -1.29 1.41
6 53 71 1.93 2.58 0.75 -47.1 -50.5 -1.72 -1.84 0.93
7 36 65 1.33 2.36 0.56 -48.5 -57.4 -1.77 -2.09 0.85
8 58 93 2.12 3.38 0.63 -76.3 -75.1 -2.78 -2.74 1.02
9 77 107 2.79 3.89 0.72 -74.1 -75.7 -2.70 -2.76 0.98
10 78 100 2.84 3.64 0.78 -75.6 -75.7 -2.76 -2.76 1.00
12 37 58 1.34 2.10 0.64 -42.2 -31.2 -1.54 -1.14 1.35
13 40 56 1.47 2.04 0.72 -41.1 -31.2 -1.50 -1.14 1.32
14 43 56 1.56 2.06 0.76 -42.1 -31.2 -1.53 -1.14 1.35
15 43 41 1.57 1.50 1.05 -42.5 -43.1 -1.55 -1.57 0.99
Mean 50 72 1.82 2.63 0.70 -55.3 -48.8 -2.02 -1.78 1.20
COV 0.26 0.25 0.26 0.25 0.17 -0.24 -0.34 -0.24 -0.34 0.25

Comp. / 
Exp.

Comp. / 
Exp.

Displacement Drift Displacement Drift
Positive direction Negative direction
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3.5.6 Typical Member and Fastener Behavior 

Once benchmarked against the physical tests for global load-displacement behavior, the 

computational  models  allow  for  more detailed  study  of  the  response  of  the  fasteners  or 

framing  members  than  is  typically  possible  in  a  full-scale  physical  test.  The  magnified 

displaced  shape  of  Model  4  (Figure  3-11)  shows  the  sheathing  panels  rotating  as  rigid 

bodies, while the frame deforms as a parallelogram with some member curvature. Nodes 

that  were  coincident  in  the  undeformed  position  separate,  producing  the  fastener 

displacement demand. Since there are no contact elements included in these models, the 

edges  of  adjacent  sheathing  panels can  move  past  one  another  or  through  the  ground 

plane without interference, as can be seen in the upper left and lower right.   

 

Table 3-5. Lateral strengths and displacements from computational models (positive direction) and AISI 
S213-07 design specification.  

 

 

Figure 3-12 compares normalized axial force and moment diagrams at peak lateral force 

for the compression chord studs of Model 4 (no ledger) and Model 2 (with ledger). The 

axial forces are normalized by the yield force of the cross-section (Py=247.5 kN based on 

Model AISI Spec. Comp.
Comp. / 
Spec.

AISI Spec. Comp.
Comp. / 
Spec.

kN/m kN/m -- mm mm --
2 12.2 14.3 1.17 42 43 1.02
3 12.2 17.6 1.44 42 49 1.16
4 12.2 13.4 1.09 42 50 1.20
5 12.2 14.0 1.14 42 43 1.02
6 12.2 13.5 1.10 42 53 1.26
7 12.2 10.5 0.86 42 36 0.87
8 12.2 12.3 1.01 42 58 1.38
9 12.2 13.2 1.08 42 77 1.82
10 12.2 13.6 1.11 42 78 1.85
12 13.7 14.9 1.09 32 37 1.14
13 13.7 18.5 1.35 32 40 1.25
14 13.7 13.6 0.99 32 43 1.32
15 10.2 13.6 1.34 21 43 2.01
Mean 12.4 14.1 1.14 38 50 1.33
COV 0.07 0.14 0.13 0.17 0.26 0.25

Strength Displacement



 74 

a  yield  stress  of  345  MPa)  without  accounting  for  effects  of  buckling.  At  each  fastener 

location, the vertical component of the fastener force creates a discrete step in the axial 

force diagram. The magnitudes of the individual fastener forces are similar for the models 

with  and  without  the  ledger.  At  the  location  of  the  ledger  centerline  in  Model  2,  a 

normalized  axial  force  of  about  3%  of Py is  transferred  to  the  stud,  creating  a  slightly 

larger  force  throughout  the  height  of  the  stud.  A  recent  technical  note  suggests  that  the 

gradual  transfer of axial force that occurs over the full height of the chord studs can be 

accounted  for  in  design  [26].  However,  these  computational  models  do  not  include 

gravity loads from the floor system or walls of higher stories, which may be larger than 

the variation within the height of the shear wall.    

 

Table 3-6. Computational and experimental lateral stiffnesses at low force levels. 

 

Comp.

initial initial at 40% strength

Model kN/m kN/m kN/m

2 833 935 658

3 933 1097 722

4 743 1024 620

5 797 983 515

6 742 961 705

7 936 943 479

8 722 919 637

9 598 527 420

10 604 839 485

12 2812 2387 2001

13 3351 3224 1842

14 2315 3742 2192

15 2309 2262 1627

Experimental





 76 

ratios of about 0.25 My. There are small non-zero moments at the top and bottom of the 

chord studs due to the rotational springs that connect the chord studs to the tracks. 

 

Figure 3-12. Normalized axial and bending forces in compression chord studs of Models  2 and 4 at peak 
lateral force 

 

In  Model  2  (with  ledger),  the  chord  stud  also  undergoes reverse  curvature,  but  the  stiff 

ledger track creates a large moment of about 70% of the yield moment at the location of 

the  lower  flange  of  the  ledger.  In  a  CFS-framed  building,  the  ledger  track  would  be 

continuous beyond the limits of the shear wall. Thus, the full ledger moment would not 

need to be transferred to the studs; some of the moment could be carried lengthwise along 

the  ledger  and  distributed  to  other  building  elements.  Future  research  should  include 

modeling  shear  walls  together  with  adjacent gravity-framed  walls  to  more  fully 

understand  the  influence  of  the  ledger  beam  in  distributing  force  and  moment  between 

the lateral and gravity wall systems. 

 

−0.2 −0.15 −0.1 −0.05 0
Axial / Yield Force

−0.5 0 0.5 1
Moment / Yield Moment

 

 

Model 2: with ledger

Model 4: no ledger
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Figure 3-13. Vector force diagrams of fastener forces in Model 2 at three different levels: (a) elastic (1.7 
kN/m), (b) peak lateral force (14.3 kN/m), (c) peak lateral displacement (6.9 kN/m).  

 

Figure  3-13 shows  three  vector  diagrams  of  the  fastener  forces  from  Model  2  for  three 

different  stages  in  the  analysis—in  the  elastic  range,  at  peak  lateral  force  and  at  peak 

lateral  displacement.  The  total  lateral  force  applied  to  the  wall  is  1.7  kN/m,  14.3  kN/m 

and 6.9 kN/m for each of the three cases, respectively. Within each diagram, the vectors 

are  plotted  to  a  common  force  scale.  For  an  individual  fastener,  non-linear  response 

begins  at  980  N  and  the  strength  of  an  individual  fastener  is  2050  N.  The  vector  plots 

show that the fastener forces are vertical throughout most of the height of the chord studs, 

but near the panel corners the forces are oriented in a diagonal direction.  

 

In  the  elastic  case  (Figure  3-13a),  the  fasteners  at  the  lower  corners  carry  the  greatest 

forces, although the magnitudes of all the fastener forces remain small compared to the 

onset  of  non-linear  response  or  strength.  There  are  very  small  fastener  forces  along  the 

central  field  stud  and  in  the  upper  sheathing  panel,  indicating  that  the  relative 
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displacement between the sheathing and framing at these locations is small. In Model 2, 

the presence of the stiff ledger track, which has the same overall dimensions as the upper 

sheathing panel, limits the relative displacements and fastener forces there. 

 

At the peak lateral force (Figure 3-13b), the fastener forces along the chord studs still are 

primarily  in  the  vertical  direction.  Near  the  panel  corners,  the  fastener  forces  are  large 

and oriented diagonally. In physical testing, the fasteners often tear off the corners of the 

OSB  sheathing  in  a  manner  consistent  with  magnitude  and  direction  of  the  forces 

observed in these computational analyses [21]. At the peak lateral force the magnitudes 

of  the  fastener  forces  in  the  chord  studs  and  tracks  are  more  uniform  in  magnitude  as 

compared  to  the  elastic  case,  due  to  the  softening  force-deformation  response  of  the 

individual  fastener  elements.  The  fasteners  near  the  lower  edge  of  the  upper  sheathing 

panel  and  the  fasteners  near  the  top  and  bottom  of  the  center  field  stud  do  carry 

significant  forces,  indicating  increased  relative  displacement  between  the  sheathing  and 

framing members in these areas.  

 

Finally at the peak lateral displacement (Figure 3-13c), all of the fasteners in the lower 

region of the wall have failed. The fasteners near the bottom of the wall fail first, at the 

occurrence of lateral strength. The fastener failures progress up the studs with little or no 

additional displacement, creating the large drop in lateral force that appears in the force 

displacement plots of Figures 3-5 and 3-6. For example, in Model 2 the force decreases 

from 14.3 kN/m to 7.2 kN/m at a drift of approximately 1.8% (Figure 3-8, 100% cycle). 

The residual strength of the wall is associated with the resisting moment created by the 
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fasteners  in  the  upper  half  of  the  wall,  which  remain  able  to  transfer  force  between  the 

sheathing and framing. In all of the computational models, the failure of the shear wall as 

a  whole  was  associated  with  failure  of  the  fasteners  beginning  at  the  bottom  and 

progressing vertically up the studs. In the physical tests, several different failure patterns 

were observed and failure did not always initiate at the bottom of the wall [21]. 

3.5.7 Effects of Specific Construction Details on Response 

Models  4  and  14  represent  the  baseline  wall  configurations  that  include  typical 

construction details and only those components (CFS members, fasteners, sheathing) that 

are  directly  accounted  for  in  determining  the  lateral  strength  by  specificaiton.  The 

remaining  wall  specimens  and  corresponding  models  investigate  the  effects  of  various 

construction  practices  such  as  ledger  track,  gypsum  board and  seam  locations.  The 

experimental  program  described  in  Liu  et  al.  [10,  21]  discusses  the  effects  of  various 

construction  details  on  the  lateral  behavior  and  overall the  computational  analyses 

confirm those observations.  

 

Adding  the  ledger  in  Models  2  and  12  increases  the  strength  slightly  and  decreases  the 

drift  at  failure.  Including  the  gypsum  in  Models  3  and  13,  increases  the  initial  stiffness 

and the strength, but has essentially no effect on the drift, as the gypsum will have failed 

at  small  drift  levels.  Comparing  Models  2  and  5  (with  ledger)  or  Models  4  and  6  (no 

ledger) shows that moving the horizontal seam down by 0.31 m has virtually no effect on 

the behavior. This assumes that the seam strap remains effective and does not fail.  

Models 7 to 10 (compared to Model 4) explore the effect of vertical seam locations and 

additional  gravity  framing  members.  Model  7  has  a  substantially  lower  lateral  strength 
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and  displacement  at  failure,  although  in  the  physical  tests  these  effects  were  not  as 

significant. Model 8 has a smaller lateral strength in the positive direction, but nearly the 

same  strength  in  the  negative  direction.  Models  9  and  10  were  able  to  sustain 

substantially  larger  drift  levels,  not  failing  until  the  200%  displacement  cycle.  The 

experimental data also showed that vertical seams in the middle of the wall (Models 8 to 

10)  did  not  result  in  significantly  reduced  strength  and  actually  increased  the  ductility. 

Smaller sheathing panels may result in smaller relative displacements between sheathing 

and framing members, thus reducing the fastener displacement demand at a given force 

level. Model 15 explores the effect of lighter (0.84 mm) field studs in 2.44 m wide walls. 

In  the  computational  analyses,  the  behavior  is  very  similar,  although  the  experimental 

data showed that the lighter field studs decreased strength and displacement at failure. 

3.6 Further Application of Fastener-Based Models 

The  development  of  performance-based  seismic  design  methods  for  CFS  structures 

requires  advanced  non-linear modeling  capabilities  at  a  range  of  scales.  Fastener-based 

models fill a computational need between detailed finite element models and simplified 

frame-type  models.  Fastener-based  models  allow  the  study  of  many  more  shear  wall 

configurations  than  would  be possible  with  full-scale  testing  alone  and  also  allow  for 

more detailed study of shear wall components. The detailed hysteretic load-displacement 

behavior  output  from  fastener-based  models  can  be  used  to  help  develop  and  calibrate 

single spring element representations for CFS shear walls. Fastener-based models could 

be extended beyond a single shear wall to include multiple shear walls, combinations of 

shear walls and gravity walls, or multi-story shear walls.  
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Future development could include modeling the shear flexibility of the sheathing material 

or incorporating non-linear behavior and other failure states within the framing members. 

Fastener-based based models provide a potential tool to assess the interaction of gravity 

and  lateral  load  systems  when  subjected  to  seismic  excitation.  Fastener-based  models 

could  also  be  used  to  study  the  behavior  of  floor  diaphragms  and  to  capture  realistic 

deformations  rather  than  assume  fully  flexible  or  rigid  behavior.  Finally,  the 

incorporation  of  the  fastener-based  methodology  within  a  general  purpose  structural 

analysis  software  allows  for  incorporation  of  other  analysis  capabilities,  such  as 

application of gravity loads prior to lateral loads or earthquake excitation. 

3.7 Conclusions 

An  efficient  computational  model for  the  lateral  behavior  of  CFS  shear  walls  was 

developed in OpenSees and validated against full-scale test results for thirteen different 

shear  walls. The  shear  wall  models  included  1.22  m  and  2.44  m  wide  walls  with  OSB 

sheathing  and  other  varied  construction  details  related  to  the  ledger  track,  addition  of 

gypsum board sheathing, horizontal and vertical seam locations, and field stud thickness 

and  location. The  modeling  approach  focuses  on  accurately  capturing  the  non-linear 

behavior  that  occurs  at  the  interface  between  the  sheathing  material  and  each  fastener. 

The only experimentally derived input to the computational model are the parameters of 

the Pinching4 material model for the fastener elements. These parameters were based on 

the  results  of  physical testing  of  small-scale  stud-sheathing-fastener  assemblies.  The 

current  limitations  of  the  model  include  the  assumption  of  rigid  diaphragms  for  the 

sheathing panels with no edge interaction, and CFS member elements that do not capture 

buckling effects. 
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The fastener-based  computational  model  was  able  to  reasonably  reproduce  key 

characteristics  of  the  force-displacement  hysteretic  response  of  the  physical  tests.  The 

average  ratio  of  predicted  lateral  strength  from  the  computational  model  to  the 

experimental  lateral  force,  measured  in  the  same  displacement  cycle  and  at  the  same 

displacement,  was  1.03.  The  average  ratio  of  computational  to  experimental  lateral 

displacements, measured at peak lateral force, was 0.70. In nine of the thirteen walls, the 

physical specimens were able to sustain one additional primary target displacement cycle 

beyond that predicted by the computational models. Compared to the specification-based 

strengths, the computational models predicted strengths 14% greater and drifts at failure 

33% greater. The computational models were found to provide more reliable predictors 

of  the  experimental  peak  response  than  the  values  determined  by  current  specification 

equations. Computational and experimental results were also compared using stiffness at 

low-force levels and energy dissipation. 

 

The  fastener-based  models  allowed  for  detailed  study  of  the  components  of  the  shear 

wall. For example, member force diagrams indicate the transfer of force at each fastener 

to the studs. Vector fastener force diagrams allow for quantification and visualization of 

the  magnitude  and  direction  of  the  force  imposed  on  the  sheathing  at  every  fastener 

location,  providing  confirmation  and  insight  into  failures  observed  during  physical 

testing. Fastener-based models have many capabilities than can be enhanced to provide a 

more detailed understanding of the lateral response of wood-sheathed CFS shear walls. 
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CHAPTER 4  

OPENSEES  MODELING  OF  WOOD  SHEATHED  COLD-FORMED  STEEL 

FRAMED SHEAR WALLS CONSIDERING CHORD STUD FAILURE 

 

4.1 Abstract 

The objective of this chapter is to present an efficient spring-element and frame-element 

based finite element model of an OSB sheathed cold-formed steel framed shear wall that 

includes  nonlinear  hysteretic  behavior  from  damage  at  the  stud-to-sheathing  connectors 

and  the  potential  for  buckling  of  the  chord  studs.  The  model  is  developed  in  OpenSees 

and  has  the  potential  to  be  an  important  building  block  tool  towards  modeling  full 

structures  framed  from  cold-formed  steel.  The  authors  have  recently  shown  that 

OpenSees  models  that  include  nonlinear  stud-to-sheathing  fasteners,  calibrated  only  to 

fastener-level  tests,  are  capable  of  predicting  full  shear  wall  hysteretic  performance  as 

long as chord stud buckling or other limit states do not occur. Further, in other work, the 

authors have experimentally characterized the hysteretic performance of chord studs and 

developed phenomenological models appropriate for the frame-element in OpenSees. In 

this  work,  the  two  models are  brought  together  to  provide  a  highly  adept  shear  wall 

model  capable  of  capturing  both  fastener-based  and  member-based  limit  states  in  the 

shear wall. The model provides a means to explore the role of gravity load in the shear 

wall  performance,  and  to study  sensitivity  of  shear  walls  to  these  two  competing  limit 

states. Thus, the model provides practical design advantages and also provides a means to 

explore reliability of the shear wall as a system. The long-term goals of the work are to 
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create advanced analysis tools for cold-formed steel seismic design and system reliability 

knowledge  that  supports  the  use  of  those  tools  in  models  and  designs  of  complete 

buildings. 

4.2 Introduction 

Cold-formed steel (CFS) structural systems continue to grow in use for low and mid-rise 

construction. Shear walls, combined with the floor and roof diaphragms, often constitute 

the  lateral  force  resisting  system  for  such  cold-formed  steel  framed  buildings.  Wood 

sheathing,  such  as  oriented  strand  board  (OSB),  is  screw-fastened  to  cold-formed  studs 

and  tracks  to  develop  shear  stiffness  as  well  as  strength  in  the  wall  system.  AISI  S213 

allows only specific shear wall configurations based on type and thickness of sheathing, 

aspect  ratio,  fastener  spacing,  stud  and  track  thickness,  and  screw  size.  The 

configurations  available  in  AISI  S213  were  largely  established  based  on  testing  (e.g., 

Branston  et  al.  2006;  Shamim  and  Rogers  2012).  Methods  for  establishing  shear  wall 

capacities  based  on  robust,  but  simple,  models  have  been  successfully  advanced  and 

implemented for wood framed shear walls  (Folz and Filiatrault 2001).  

 

Shear  wall  response  is  typically  dominated  by  the  local  behavior  at  each  steel-fastener-

sheathing  connection.  As  part  of  the  NSF-funded  CFS-NEES  effort,  a  series  of cyclic 

OSB-sheathed CFS-framed shear wall tests were conducted that form benchmark results 

for  shear  walls  (Liu  et  al.  2012).  In  addition,  cyclic  steel-fastener-sheathing  “fastener” 

tests covering the details employed in the shear wall tests were also completed (Peterman 

and  Schafer  2013).  Finally,  and  most  recently,  an  OpenSees  model  of  the  benchmark 

shear  wall  tests  that  employed  the  cyclic  “fastener”  results  to  characterize  a  nonlinear 
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cyclic  phenomenological  model  at  the  fastener  locations  demonstrated that  the  basic 

elastic and full non-linear cyclic response of the shear walls could be predicted based on 

the fastener-based results (Buonopane et al. 2014; Bian et al. 2014).  

 

In seismic design CFS studs in shear walls carry axial force and bending moment from 

the  lateral  demands,  and  from  gravity  loads  (dead,  live,  etc.).  In  current  designs  and 

experiments shear wall lateral resistance is typically dominated by fastener capacity. This 

is,  in  part,  because  low-rise  buildings  have  more  modest  gravity  demands,  and  because 

seismic design requires the studs to be designed for Ωo force levels (e.g. in OSB sheathed 

shear walls Ωo=3 per current ASCE 7 provisions, thus the chord studs are designed with 

considerable reserve). However, as CFS framing is utilized for higher numbers of stories 

the  gravity  loads  increase,  in  addition  as  capacity-based  design  methods  and  system 

reliability  become  more  sophisticated Ωo  is  likely  to  be  reduced.  As  a  result, 

understanding  the  potential  nonlinear  role  of  the  studs  in  the  shear  wall  response  is 

growing in importance.  

 

As  a  companion  to  the  CFS-NEES  effort  testing  on  the  cyclic  response  of  cold-formed 

steel  axial  and  bending  members  was  recently  completed  (Padilla-Llano  et  al.  2013). 

Specimens  were  selected  such  that  their  predicted  monotonic  capacity  in  compression 

was governed either by local, distortional or global buckling limit states as predicted by 

the  Direct  Strength  Method  in  AISI-S100.  Cyclic  tests  were  then  conducted  to  develop 

the  full  nonlinear  hysteretic  response including  reduced  stiffness,  buckling,  and  post-

buckling  in  compression,  and  yielding  and  eventually  fracture  in  tension.  Non-
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dimensional  parameters  were  utilized  to  develop  general  phenomenological  models  for 

members dominated by local, distortional, or global buckling limit states in compression 

and  were  implemented  using  the  Pinching04  material  in  OpenSees  (Padilla-Llano  et  al. 

2013). 

 

In this chapter, we bring together the fastener-based shear wall model and the nonlinear 

(stud) frame element model to provide a model capable of capturing both fastener-based 

and  member-based  limit  states  in  a  wood-sheathed  CFS-framed  shear  wall.  Monotonic 

and cyclic response of the shear walls are predicted from the developed OpenSees models 

so that the performance of these models with different limit states can be fully evaluated. 

The  model  provides  a  means  to  explore  the  role  of  gravity  load  in  the  shear  wall 

performance, and to study sensitivity of shear walls to these two competing limit states. 

Thus, the model provides practical design advantages and a means to potentially explore 

reliability of the shear wall as a system. 

4.3 Description of Numerical Models in OpenSees 

The model developed in this work is implemented in OpenSees (i.e., the Open System for 

Earthquake Engineering Simulation, (Mazzoni et al. 2003)). OpenSees provides efficient 

solvers  for  earthquake  building  simulation  and  is  widely  used  in  seismic  simulations. 

OpenSees  derives  much  of  its  efficiency  from  primarily  being  a  frame  element  based 

code, and providing an extensive library of phenomenological based models. The models 

developed herein are implemented in OpenSees and take advantage of its strengths. Other 

more  general  purpose  finite  element  software,  e.g.  ABAQUS  (Simulia  2012),  provides 

more  extensive  libraries  of  elements  and  material  models,  but  is  not  as  efficient  or 
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purpose-built  as  OpenSees.  This  section  provides  the  details  for  the  OpenSees-based 

shear wall mode developed here. 

 

A  typical  OSB-sheathed,  CFS-framed  shear  wall  from  Liu  et  al.’s  (2012)  testing  is 

selected  as  a  benchmark  (see  Figure  4-1a).  The  selected  specimen  is  designated  as 

specimen  test-2  in  Liu  et  al.  (2012)  (Liu  et  al.  2014;  Liu  et  al.  2012).  The  primary 

dimensions of the shear wall are 1.22 m [4 ft.] wide by 2.74 m [9 ft.] high. The shear wall 

is  framed  with  600S162-54  studs,  11.11  mm  [7/16  in.]  OSB  on  one  face,  using  #8 

fasteners at 152.4 mm [6 in.] spacing in the perimeter and 304.8 mm [12 in.] spacing in 

the field connecting the OSB to the CFS framing. A 1200T200-97 ledger was fastened to 

the back side of the frame at the top of the shear wall. At the base Simpson S/HDU6 hold 

downs are connected to the chord studs, and 15.88 mm [5/8 in.] diameter bolts through 

the bottom track to the base. At the top, #10 38.1 mm [1 ½ in.] self-drilling screws spaced 

at 76.2 mm [3 in.] connect through the top track to the loading beam. 

4.3.1 Material and Element in OpenSees 

The CFS framing members, including the stud and tracks, are subdivided into 20 and 8 

beam-column  displacement  elements  respectively,  with  nodes  at  each  fastener  location. 

Linear elastic material and beam-column elements were used to model the field stud and 

tracks. To provide for stiffness reduction, buckling, and post-buckling of the chord studs 

they  were  modeled  with  a  purpose-built  implementation  of  the  Pinching04  material  as 

detailed in Section 3.2.2. 
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We  used  two  reference  nodes  with  fixed  degrees  of  freedom  as  the  foundation. Zero-

length  elements  connecting  foundation  nodes  and  two  nodes  at  the  chord  studs  were 

modeled  as  hold-downs.  Based  on  Simpson  Strong-Tie  published  values  of  tension 

strength  and  displacement, tension stiffness for the hold-down of 9.9 KN/mm [56.7 

kips/in] was selected while the compression stiffness of the hold down was modeled as 

1000 times larger to simulate bearing against a rigid foundation. The translational degrees 

of freedom at two bottom-track nodes were fixed to simulate the shear anchors at these 

locations (See Figure 4-1b). 

 

At  fastener  locations,  the  nodes of  the frame  members  and the sheathing coincide. As 

shown in Figure 4-1b, these nodes are connected using zero-length springs. Pinching04 

(Lowes  et  al.  2003) was  assigned  as  the  material model for the zero-length  fastener 

elements. The parameters  required to  define the  Pinching04  uniaxial  material  in 

OpenSees, which includes the backbone curve, degradation factors, and other force and 

displacement  relation  parameters, are estimated  from  separate physical  testing  of  the 

fasteners as reported by Peterman and Schafer (2013) (Peterman et al. 2014). Table 4-1a 

and b provide the parameters used in cyclic loading to define the Pinching04 material for 

the  zero-length  fastener  springs. Fastener  backbone  curves  for  monotonic  and  cyclic 

differ  because  of  the  cumulative  damage  in  cyclic  loading.  The  backbone  curves  of 

fasteners for monotonic and cyclic loading for two different thickness studs are compared 

in Figure 4-2. 
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Table 4-1. Cyclic Pinching04 parameters in shear wall model (model is symmetric) 
(a) Backbone curve 

  

(b) Unloading and reloading parameters 

   

 

 

Figure 4-2. Backbone definition for fasteners in different chord stud thickness 

 

4.3.2 Development of Chord Stud Model in OpenSees 

Modeling the hysteretic behavior, including the effect of buckling deformations in CFS 

axial  and  flexural  members  using  nonlinear-beam  column  elements,  has  been  recently 

steel loading

thickness ePd1 ePd2 ePd3 ePd4 ePf1 ePf2 ePf3 ePf4

mm mm mm mm mm kN kN kN kN

Monotonic 0.87 3.70 7.70 10.00 0.76 1.50 1.90 1.50

Cyclic 0.51 2.10 6.50 12.00 0.71 1.30 1.70 0.12

Monotonic 0.56 3.10 6.70 8.60 0.86 1.70 2.10 1.70

Cyclic 0.51 2.00 6.30 10.00 0.98 1.50 2.00 0.22

0.84

1.40

steel Unloading and reloading Pinching4 Parameters

thickness rDispP rForceP uForceP rDispN rForceN uForceN

mm

0.84 0.41 0.01 0.001 0.41 0.01 0.001

1.40 0.42 0.01 0.001 0.42 0.01 0.001
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explored in Padilla-Llano et al. (2013, and 2015). In this chapter, the nonlinear behavior 

in  the  axial  direction  was  modeled  using  the  Pinching04  material,  and  elastic  stiffness 

was  assumed  for  flexure.  The  modeling  strategy  consists  of  hysteretic  behavior  at  the 

cross-section  level  using  a  nonlinear  beam-column  element  with  distributed  nonlinear 

axial load-strain (P-ε) section behavior (see Figure 4-3b). The underlying behavior model 

is  depicted  in  Figure  4-3c  and  is  based  on  the  formulation  of  the  Pinching04  material 

model, as currently implemented in OpenSees. 

 

Three  components  of  the  behavior  model  are  needed:  backbone  curve,  unloading-

reloading paths that account for pinching, and a damage model for strength and stiffness 

degradation.  The  parameters  that  define  these  three  parts  can  be  obtained  from  the 

general  expressions  for  modeling  steel  columns  including  local  buckling  developed  by 

Padilla-Llano  et  al.  (2015).  Backbone  curves,  and  parameters  for  strength  degradation, 

stiffness degradation and pinching were calculated as a function of the local cross-section 

slenderness λℓ.  The  distributed  nonlinearity  approach  allows  flexible  modeling  of  thin-

walled  steel  members  subjected  to  different  axial  loading  conditions,  e.g.  non-uniform 

axial load resulting from the contributions of individual fasteners attached to a chord stud 

in  a  shear  wall.  The  parameters  used  in  the  examples  presented  in  this  chapter  are 

summarized below. 
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Figure 4-3. Axial hysteretic model for CFS axial members experiencing local buckling (Padilla-Llano et al. 

2015) 

 

4.4 Finite Element Results and Discussion 

This  section explores  the  impact  of  loading  (monotonic  vs.  cyclic),  gravity  load,  and 

chord stud thickness on the predicted response of a CFS-framed shear wall based on the 

developed  OpenSees  models.  In  addition  to  providing  comparison  to  benchmark  shear 

wall testing, a brief comparison is also provided to a more high fidelity model using shell 

elements in ABAQUS. 

4.4.1 Fastener-Based Modeling Result in OpenSees 

The model developed in Section 3.2 is implemented and compared with the benchmark 

testing from Liu et al. (2012) in Figure 4-4. The only differences between this model and 

earlier fastener-based OpenSees models  (Buonopane et al. 2014; Bian et al. 2014) are the 

inclusion of the nonlinear chord stud response, and a slight modification to the location of 

the hold downs in the model. Previously, the hold downs had been modeled with a small 

offset, but this lead to numerical difficulties and was simplified here to align directly with 

the stud. The results for the new model are nearly identical to before and indicate that the 

model  developed  in  Section 3.2  can  provide  a  reasonable  approximation  of  shear  wall 

Pinching04 parameters 600S162-33 600S162-54

gF2 0.43 0.43

gF4 0.57 0.57

gD2 0.46 0.51

gD4 0.08 0.13

rDispP 0.42 0.42

rForceP 0.46 0.46

uForceP -0.02 -0.02

rDispN 0.38 0.38

rForceN 0.89 0.89

uForceN 0.21 0.21

gE 1.57 2.38
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response, and further, that the introduction of the nonlinear chord stud modeling does not 

influence the results at low levels of axial load. 

 

  

(a) monotonic (b) cyclic 

Figure 4-4. Comparison of shear wall force – deformation response 

 

4.4.2 Shear Wall Behavior at Different Gravity Levels  

To demonstrate the impact of gravity load on the predicted performance of the shear wall 

we  gradually  increased  the superimposed  gravity  load  in  the  OpenSees  model  and 

examined the monotonic and cyclic response as a function of gravity load. For reference, 

the  axial  load  capacity  of  the  individual  studs  considered,  Pnl,  is  provided  in  the  final 

column  of  Table 4-2.  Consistent  with  experimental  observation  it  is  assumed  that  the 

sheathing  restricts  distortional  and  global  buckling  and  thus  the  stub  column  capacity 

converges  to  the  fully  braced  local  buckling  result.  The  inputs  for  the  Direct  Strength 

Method of AISI S100 in the determination of Pnl are also provided in Table 4-2. 
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Table 4-2. Yielding and buckling strength for different cross sections 

  

The  shear  wall lateral response  under  monotonic  loading  at  different levels  of 

superimposed gravity is provided in Figure 4-5a. The gravity load was added at the top of 

the chord  studs only at  the  values of 1/4Pnl,  1/3Pnl, 1/2Pnl, 2/3Pnl and 3/4Pnl. The initial 

stiffness and peak load and displacement are provided in Table 4-3. As the gravity load 

increases,  the  peak  strength  and its  corresponding displacement  decrease. However,  the 

decrease  is  minimal  until  somewhere  between  2/3Pnl and  3/4Pnl when  the  failure  mode 

switches from the fastener to the chord stud. The presence of this limit state near 2/3Pnl is 

no accident since the chord studs are capacity protected with an Ωo of 3. This Ωo force 

level is exhausted when the superimposed dead load is 2/3 of the axial capacity (Pnl). It is 

interesting to note that the model predicts a significant increase in initial stiffness for the 

shear  walls.  This  is  due  to  the  superimposed  gravity  load  allowing  both  chord  studs  to 

remain  in  compression  (and  thus  the  higher  bearing  stiffness  as  opposed  to  the  lower 

stiffness based on the hold down in tension) under moderate applied loads. 

Table 4-3. Monotonic lateral loading result 

 

 

Cross section Fy  (MPa) Py  (kN) Pcrl  (kN) Pnl  (kN)

600S162-33 340.0 51.0 8.2 23.0
600S162-54 340.0 130.0 35.0 68.0

Gravity load level Peak load (kN) Disp. @ peak load (mm) Initial stiffness (kN/mm) Failure Location
P = 0 18.17 45.54 0.86 Fastener

P = 1/4Pnl 17.04 38.21 1.61 Fastener

P = 1/3Pnl 16.72 36.23 1.56 Fastener

P = 1/2Pnl 15.95 35.88 1.42 Fastener

P = 2/3Pnl 15.08 35.49 1.3 Stud

P = 3/4Pnl 12.06 17.92 1.25 Stud
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(a) shear wall monotonic response (b) worst case fastener response under loading 

 

(c) chord stud axial force – strain response 

Figure 4-5. Shear wall behavior under monotonic lateral loading 

 

The  fastener displacement-force  curve during  the  monotonic  loading  is  provided  in 

Figure 4-5b. The selected fastener is in the bottom right corner of the shear wall, which 

has the  largest  deformation of all  the  fasteners. Under  compression the  chord  stud is 

deformed;  however the  OSB  board is  modeled as  a  rigid  body and  thus cannot be 

compressed. As a result a small initial incompatibility between the framing and the OSB 

board exists creating an initial fastener load. All the fasteners follow the same backbone 

response, but the displacement at failure is demonstrably a function of gravity load. For 

the  highest  superimposed  gravity  load  (3/4Pnl)  the  fastener  does  not  reach  its  peak 
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capacity – as the chord stud failure controls the response.  

 

The normalized axial load vs. axial strain for the chord studs is provided in Figure 4-5c 

for  monotonic  loading.  When  the gravity  load is  at  2/3Pnl or  larger  the  axial  force  in 

chord  stud gets  to Pnl and then  buckles,  following  the  Pinching04  response  defined  in 

Section  2.2. The  results  indicate  that  the  model  is  capable  of  capturing  both  fastener-

based  and  member-based  limit  states  and  that  at  high  enough  gravity  load  this  may  be 

important.  

 

Figure 4-6 provides the results of the shear wall response under cyclic (CUREE protocol) 

loading. The basic monotonic results as gravity load is increased hold true in the cyclic 

response:  there  is  an  increased  stiffness  at  low  force  levels,  the  peak  force  and 

displacement decrease modestly until chord stud failure occurs, chord stud failure at high 

superimposed axial loads significantly limits the response. New phenomena also emerge: 

the response moves into the 2nd and 4th quadrant even though the model is fully pinched 

at no axial load, and numerical convergence under high axial load becomes challenging. 

Additional study is needed to explore these new observations and challenges. 
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(a) response for low superimposed axial load (b) response for high axial load 

Figure 4-6. Shear wall behavior under cyclic lateral loading 

 

4.4.3 Shear Wall Behavior with Different Thickness Chord Studs 

In  the  preceding  study  we  considered  the  superposition  of  a  large  gravity  load  and 

commented on the fact that at high enough gravity load the seismic design using Ωo=3 is 

eventually  exhausted.  Another  option  considered  for  exploring  the  impact  of  the  chord 

studs  on  the  response  is  to  begin  with  a  chord  stud  that  has  1/3  the  initial  capacity.  As 

Table 4-2 indicates the stud nominal strength Pnl decreases by almost exactly a factor of 3 

as  the  stud  thickness  is  reduced  from  1.37  mm  [54mil]  to  0.84  mm  [33mil].  However, 

when the stud thickness is changed the sheathing fastener response also changes, since it 

is  a  function  of  the  thickness  of  steel  it  is  anchored  into,  and thus  the  change  is  not  as 

simple as decreasing only the stud capacity and response.  

 

The  monotonic  shear  wall  response  with  1.37  mm  [54mil]  and  0.84  mm  [33mil]  chord 

studs  and  fastener  properties  is  provided  in  Figure  4-7a.  For  comparison  an  additional 

analysis was conducted where the 0.84 mm [33mil] fastener properties were employed, 
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but  still  the  1.37  mm  [54mil]  chord  stud  properties  were  employed.  This  results  is 

essentially  coincident  with  the  case  when  the  fastener  and  chord  stud  are  modified, 

indicating  that  the  change  in  the  fastener  response,  not  the  change  in  the  axial  stud 

response, dominates. In the studied case the thinner chord stud influences the response, 

but only through the fastener, not because it has a reduced axial response. This is borne 

out in the Figure 4-7b cyclic response as well. Further examination under superimposed 

gravity load is possible and desirable, but has been conducted at this time.  

 

  

Figure 4-7. Shear wall behavior with different stud thickness under: (a) monotonic loading; (b) cyclic 
loading 

 

4.4.4 Discussion on Failure Mode in ABAQUS Model 

In  addition  to  pursuing  efficient  fastener-based  models  in  OpenSees  we  have  also  been 

pursuing  high  fidelity  simulations  in  ABAQUS.  In  OpenSees  the  cold-formed  steel 

framing  (stud,  ledger  or  track) is  modeled  using  displacement-based  beam-column 

elements. Such elements assume rigid cross-sections and do not allow for localized plate 

flexibility  in  the  cold-formed  steel  framing.  In  addition,  in  the  benchmark  shear  wall 

testing the OSB sheathing is attached to one face of the studs and the ledger track to the 
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opposite face. These eccentricities are not included in the OpenSees model.  To explore 

these  effects  a  primarily  shell  element  based  shear  wall  model  was  developed  in 

ABAQUS.  

 

The model was developed based on the previous work  (Ngo 2014; Bian et al. 2014). The 

CFS framing members and sheathing are modeled as four-node shell finite elements (S4R 

in  ABAQUS). A  relatively  coarse mesh  is  used  for  the  oriented  strand  board  (OSB) 

sheathing, which is modeled as elastic but stiff (currently with E=207,000 MPa [30,000 

ksi]  and =0.3) to  minimize  diaphragm  deformations. The  CFS  frame  (steel-to-steel) 

connections are modeled as pinned by means of MPC constraints in ABAQUS. The steel-

to-sheathing  connections  are  modeled  as Spring-A  elements  with  the  same  backbone 

curve  as  used  in  OpenSees.  The  final  result  is  a  model  that  is  similar  to  the  OpenSees 

model in many ways, but which includes a full and accurate three-dimensional treatment 

of the framing.  

 

Figure 4-8a and b provide the comparison of load-displacement result between OpenSees 

and  ABAQUS  for  0.838  mm  [33mil] and  1.371  mm  [54mil]  thickness  chord  stud.  The 

result shows that the OpenSees and ABAQUS results agree well with one another.  

 

µ
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(a) 0.84 mm [33mil] chord stud models (b) 1.37 mm [54mil] chord stud models 

Figure 4-8. Shear wall modeling result in ABAQUS compared with OpenSees 

 

Figure  4-9a  and  b  provide the deformation  of  the  shear  wall  under  monotonic  loading. 

The deformation indicates a modest amount of torsion in the studs, although it does not 

decrease the shear wall lateral resistance capacity significantly in the studied case. 

 
 

(a) (b) 

Figure 4-9. Shear wall deformation in ABAUS 

 

4.5 Discussion and Future Work 

The  work  presented  herein  provides  an  efficient  model  implemented  in  OpenSees  with 

two potential nonlinear limit states for wood sheathed CFS-framed shear walls: damage 

at fastener locations, or local buckling of chord studs. Results are provided where at high 
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levels of superimposed dead load the dominant failure changes from fastener damage to 

chord  stud  buckling;  however  the  model  has  convergence  issues  that  require  additional 

investigation. In addition, initial models using a weaker (0.84 mm [33mil]) chord stud for 

the  shear  walls  need  to  be  completed  at  different  absolute  levels  of  superimposed  dead 

load to demonstrate the impact of gravity load on weaker chord studs. Formal shear wall 

design utilizes Ωo to capacity protect the chord studs – evaluation of archetypical shear 

wall designs at different levels of Ωo using the developed OpenSees model would provide 

a  beneficial  means  to understand  the  impact  of  this  assumption  in  seismic  design. 

Addition of superimposed gravity load to the higher fidelity ABAQUS model such that 

chord stud buckling is initiated and comparison between the two models would be useful. 

Incorporation  of  other  limit  states  (hold  downs,  shear  anchors,  etc.)  would  also  be 

beneficial.  Monte  Carlo  simulation  utilizing  the  OpenSees  model  for  reliability 

simulation  would  potentially  better  show  the  power  of  including  multiple  limit  states 

within  the  model  itself  and  help  to  develop  more  rational  resistance  factors  for  these 

systems.  Incorporation  of  gravity  walls  in  the  OpenSees  model  has  the  potential  to 

efficiently provide insights on the large overstrength often realized in these systems and 

additionally  provides  a  direct  path  to  robust,  accurate,  and  efficient  full-scale  building 

modeling – the long-term goal of this research. 

4.6 Conclusion  

Wood  sheathed  cold-formed  steel  framed  shear  walls  may  be  efficiently  modeled  in 

OpenSees  and  provide  full  nonlinear hysteretic  response  based  on  damage  at  stud-to-

sheathing  connectors  or  due  to  chord  stud  buckling.  This  provides  engineers  with  an 

efficient  solution  that  can  predict  the  shear-deformation  response  of  these  shear  walls 
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under  a  multitude  of  different  details  and  incorporating  the  two  most  important  limit 

states. The provided model is an extension of previous work that focused on nonlinearity 

at the stud-to-sheathing connectors. Here nonlinearity is extended to the chord studs and 

shear  wall  models  are  provided  that  demonstrate  the  impact  of  this  inclusion.  In 

particular,  the  impact  of  the  switch  of  limit  states  in  a  shear  wall  from  fastener-based 

damage  to  chord  stud  buckling  at  very  high  levels  of  superimposed  dead  load  is 

demonstrated.  Verification  of  the  developed  model  is  provided  by  comparison  with 

experiments  and  a  higher  fidelity  shell  element  based  model;  however,  additional 

verification  is  needed.  Significant  additional  work  remains  to  utilize  the  model  more 

formally in seismic shear wall design, to better understand system reliability, and in full 

building  models.  Nonetheless,  the  model  represents  a  significant  advancement  for 

efficient computational modeling of cold-formed steel framed shear walls and has wide 

potential application. 
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CHAPTER 5  

OPENSEES  MODELING  OF  COLD-FORMED  STEEL  FRAMED GRAVITY 

WALL 

 

5.1 Abstract 

The objective of this chapter is to present and explore an efficient spring-element-based 

finite  element  model  of  a  wood  sheathed  cold-formed  steel  framed  wall  system.  The 

model is developed in OpenSees and has the potential to be an important building block 

tool  for  modeling  full  structures  framed  with  cold-formed  steel.  The  lateral  stiffness  of 

the gravity wall is currently ignored in both the design and modeling of multi-story cold-

formed  steel  (CFS)  framed  building.  However,  full-scale  experimental  work  on  a  two-

story cold-formed steel (CFS) framed buildings, as part of the CFS-NEES effort, shows 

that gravity walls can provide a contribution to the lateral response and potentially should 

be  considered  in  the  design  of  lateral  force  resisting  systems.  Recently  an  engineering 

model  implemented  in  OpenSees  employing  fastener-based  characterization  as  the 

essential nonlinearity in a CFS framed shear wall has shown that OpenSees models are 

capable of predicting full shear wall hysteretic performance. In the work presented here, 

the fastener-based shear wall model is extended to provide a model capable of capturing 

coupled  shear  wall  and  gravity  wall  behavior  in  a  wall  system.  The  contribution  of 

gravity  walls  on  lateral  resistance  is  explored  by  comparing  the  wall  system  behavior 

with and without gravity walls. The model provides practical design advantages and also 

a means to model the lateral system resistance in CFS framed buildings. 
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5.2 Introduction 

Cold-formed  steel  (CFS)  structures  are  commonly  used  for  low  and  mid-rise 

construction.  Often  wood  sheathing,  such  as  oriented  strand  board,  is  screw-fastened  to 

the cold-formed stud and track framing to develop shear stiffness as well as strength in 

the wall system. The North American Standard for Cold-formed Steel Framing – Lateral 

Design  (AISI  S213-07)  provides  CFS-framed  specific  shear  wall  strength  based  on  the 

type and thickness of sheathing, aspect ratio, fastener spacing, stud and track thickness, 

and screw size. 

 

In AISI S213-07, shear walls are classified either as those with hold downs installed at 

the  end  of  each  wall  segment  (type  I),  or  those  with  detailing  for  force  transfer  around 

openings (type II). Type I shear walls are laterally decoupled, rocking back and forth as 

individual  walls  under  a  lateral  load.  Type  II  shear  walls  are  laterally  coupled  and  thus 

behave  as  one  whole  wall.  In  line  with  the  shear  walls  are  the  gravity  walls,  another 

important component of a CFS structure that is designed to carry vertical load from the 

upper levels of the building. The fastener spacing, stud type and connection to foundation 

are  the  main  differences  between  shear  walls  and  gravity  walls.  Hold  downs  are  only 

installed at the bottom of the shear wall chord studs (see Figure 5-1a). There is no direct 

connection  between  gravity  studs  and  the  foundation.  The  bottom  track  for  both  shear 

walls and gravity walls are restrained horizontally at the floor by simple connectors to the 

foundation such as low velocity fasteners (see Figure 5-1c). In ledger framing, a ledger or 

carrier  track  is  used  to  carry  the  floor  joists  and  in  turn  connects  together  all  wall 
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models  without  gravity  walls  and  non-structural  components  had  significantly  larger 

natural period than the models with them. 

 

Buonopane et al. (2014) developed a series of OpenSees models that employed fastener 

test data from Peterman et al (2013) and demonstrated that the basic elastic and full non-

linear  cyclic  response  of  the  shear  walls  could  be  predicted  utilizing  fastener-based 

models.  In  this  chapter,  the  fastener-based  shear  wall  model was  extended to  a  wall 

system  including  both  a  shear  wall  and  gravity  wall.  For  this  series  of  models,  results 

such as base shear and hold down force distribution are explored, and their stiffness and 

strength are compared. 

5.3 Description of Numerical Models in OpenSees 

The model developed in this work is implemented in OpenSees (i.e., the Open System for 

Earthquake Engineering Simulation (Mazzoni et al. 2003)). OpenSees provides efficient 

solvers  for  earthquake  building  simulation  and  is  widely  used  in  seismic  simulations. 

OpenSees  derives  much  of  its  efficiency  from  primarily  being  a  frame  element  based 

code, and provides an extensive library of phenomenological based models. This section 

provides the details for the OpenSees-based wall modeling developed in this chapter. 

5.3.1 Material and Element for Single Shear Wall Model 

A typical OSB-sheathed, CFS-framed shear wall from the testing of Liu et al. (2014) is 

selected  as  the  benchmark  shear  wall  model  in  this  chapter  (see Figure 5-2).  The shear 

wall is combined with different configurations of gravity walls to comprise different wall 

systems. The primary dimensions of the shear wall are 1.22 m [4 ft.] wide by 2.74 m [9 

ft.] high. The shear wall is framed with 600S162-54 studs, 11.11 mm [7/16 in.] OSB on 



 112 

one face, using #8 fasteners at 152.4 mm [6 in.] spacing in the perimeter and 304.8 mm 

[12 in.]  spacing  in  the  field  connecting  the  OSB  to  the  CFS  framing.  A  1200T200-97 

ledger was fastened to the back side of the frame at the top of the shear wall. At the base, 

Simpson S/HDU6 hold-downs are connected to the chord studs, and 15.88 mm [5/8 in.] 

diameter bolts through the bottom track to the foundation (HSS section) . At the top, #10 

38.1 mm [1 ½ in.] self-drilling screws spaced at 76.2 mm [3 in.] connect through the top 

track to the loading beam. 

 
Figure 5-2. Benchmarked CFS shear wall 

 

The CFS framing members, including the stud and tracks, are subdivided into 20 and 8 

displacement  based  beam-column  elements  respectively,  with  nodes  at  each  fastener 

location. Linear elastic material and beam-column elements were used to model the stud 

and tracks. Rotational springs were used to connect the studs and top/bottom tracks (See 

Figure  5-3).  Stiffness  for  the  rotational  spring  is  set  as  113  KN-m/rad  [100  kip-in./rad] 

based  on  approximations  from  the  measured  lateral  stiffness  of  bare  CFS  frame  tests 

(Buonopane  et  al.  2014).  The  sheathing  board  was  modeled  as  a  rigid  diaphragm  with 
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At  fastener  locations,  the  nodes  of  the  frame  members  and  the  sheathing  coincide.  As 

shown  in  Figure  5-3,  these  nodes  are  connected  using  zero-length  springs.  Pinching04 

was assigned as the material model for the zero-length fastener elements. The parameters 

required  to  define  the  Pinching04  uniaxial  material  in  OpenSees,  which  includes  the 

backbone  curve,  degradation  factors,  and  other  force  and  displacement  relation 

parameters,  are  estimated  from  separate  physical  testing  of  the  fasteners  as  reported  by 

Peterman and Schafer (2013). 

5.3.2 Modeling of Gravity Wall and Wall System 

There  are  different  possible  combinations  of  gravity  wall  and  shear  wall  in  CFS  wall 

system. In this chapter five different wall combination scenarios were modeled, as shown 

in Table 5-1. The shear wall and gravity wall configurations are provided in Figure 5-4. 

The sheathing material of the shear wall is either OSB (in scenarios 1, 2 and 3) or OSB 

and  gypsum  (in  scenario  4).  The  gravity  wall  consists  of  bare  frame,  frame  +  OSB,  or 

frame  +  gypsum  (scenarios  1,  2  and  3,  respectively),  or  a  combination  frame  + OSB  + 

gypsum  (scenario  4).  Wall  scenario  0  represents  the  isolated  OSB  sheathed  shear  wall 

model without the gravity wall. 

 
Table 5-1. Model matrix for CFS wall system 

 

 

Gravity wall

OSB Gypsum Bare frame OSB Gypsum

0 ×

1 × ×

2 × × ×

3 × × ×

4 × × × × ×

Wall  
Scenario

Shear wall
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(5-1) 

where I is the moment of inertia about weak axis bending for bottom track; b is distance 

between  the  stud  and  LVF  at  one  side  and  L  is  the  distance  between  two  low  velocity 

fasteners. The distance between two LVFs is 609.6 mm [24 inches] and 1219.2 mm [48 

inches] and twice the LVF distance is used to account for the high probability that at least 

one  LVF  is  inadequate  in  tension.  Under  these  assumptions  the  tensile  stiffness  at  a 

bottom  of  a  gravity  wall  stud  is  1.1  kN/mm  [6.28  kip/in]  or  1/10th  the  hold  down 

stiffness. 

5.4 Modeling results and discussion 

In  this  section  shear-deformation  responses were  obtained for  different  wall  models. 

Based  on  the  results,  peak  load  and  stiffness  were  compared  for  different  wall  system 

scenarios.  Furthermore,  base  shear  and  hold  down  force  distribution  at  shear  wall  and 

gravity walls were explored. 

5.4.1 Load-Displacement Curve for Wall Systems 

Figure  5-5  provides  the  shear  load-displacement  curve  for  different  wall  systems.  The 

stiffness  and  peak  load  capacity  increase  significantly  when  gravity  walls,  especially 

those with OSB and/or gypsum board, were added to the shear wall. Although the tensile 

stiffness for the connection between a gravity wall stud and the foundation was small, the 

direction  of  the  shear  deformation  (left  vs.  right)  is  not  observed  to  have  a  significant 

difference in terms of lateral stiffness. 

 

k=
48EI

b(3L2−4b2)
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5.4.2 Reaction Force for Wall System 

An external lateral force on the wall generates base shear at the bottom track and tension/ 

compression  force  at  hold  downs  and  the  bottom  of  studs  The  moment  from  the  shear 

force at the track and from the axial force at the stud ends are balanced in equilibrium in 

the wall system. 

Table 5-2. Peak load and stiffness for wall system models 

 

 

Wall model #3 (SW with OSB + GW with Gypsum) was selected as a representative case 

to  provide  the  reaction  force  information.  Figure 5-6  provides  wall  deformation,  axial 

force at the bottom of the studs and base shear for this model. When the wall was sheared 

to  the  left,  only  the  left  hold  down  experienced  compression  force.  The  gravity  wall 

carries  small  tensile  forces  along  its  length,  the  largest  of  which  is  at  the  shared  chord 

stud of the shear wall, which provides the larger tension stiffness of the hold down. When 

the wall was sheared to the right, hold downs in the shear walls experienced tension at the 

bottom of the studs while the gravity wall was under compression (i.e. the classic Type II 

shear  wall  behavior  even  though  the  only  hold  downs  are  at  the  shear  wall).  The  force 

value  at  the  bottom  of  each  stud  is  provided  in  Table  5-3.  The  hold  down  forces  are 

always the greatest but the forces in the other locations are consequential. The shear wall 

SW+GW SW GW SW+GW SW GW Kall KSW KGW
Wall system #1 21.70 20.35 1.69 44.79 50.91 44.79 0.48 0.40 0.04
Wall system #2 41.88 20.35 22.02 37.97 50.91 54.06 1.10 0.40 0.41
Wall system #3 27.70 20.35 7.02 44.44 50.91 43.68 0.62 0.40 0.16
Wall system #4 64.53 25.19 27.22 53.56 55.07 59.77 1.20 0.46 0.46

SW+GW SW GW SW+GW SW GW Kall KSW KGW
Wall system #1 21.72 20.35 1.62 42.91 50.75 42.91 0.51 0.40 0.04
Wall system #2 42.13 20.35 22.02 43.26 50.75 53.43 0.97 0.40 0.41
Wall system #3 27.70 20.35 7.02 43.68 50.75 43.68 0.63 0.40 0.16
Wall system #4 66.55 25.19 27.22 49.66 55.07 59.77 1.34 0.46 0.46

Pmax (kN)

Pmax (kN)

δ@Pmax  (mm) Stiffness K

lateral loading to right

δ@Pmax (mm) Stiffness K

lateral loading to left
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Table 5-4. Base shear at bottom track in wall model #3 

 

 

5.5 Discussion and Future Work 

The  work  presented  herein provides  an  efficient  model  implemented  in  OpenSees  for 

wood  sheathed  CFS-framed  wall  combination.  Results  are  provided  for  different 

configurations  of  shear  walls  and  gravity  walls.  There  are  many  other  kinds  of  wall 

configurations in CFS buildings that may be obtained by changing the relative location of 

shear  wall  and  gravity  wall  and  other  details  including  openings.  Work  remains  to 

explore  different  configurations  for  the  wall  models.  In  a  previous  work,  the  authors 

utilized  an  element  with  Pinching04 material  for  shear  wall  chord  studs,  which  can 

estimate  the  stud  buckling  failure.  Addition  of  superimposed  gravity  load  to  the  wall 

model  such  that  the  chord  stud  buckling  is  initiated  in  this  model  could  also  be  useful. 

Using  the  fastener-based  wall  model  to  calibrate  simplified  truss  element-based  shear 

panel  models  may  also  be  beneficial.  For  modeling  complex  3D  CFS  buildings, 

incorporation  of  wall  models-based  on  truss  elements  has  the  potential  to  efficiently 

provide a direct path to robust, accurate and efficient full-scale building modeling. 

5.6 Conclusions 

Wood  sheathed  cold-formed  steel  framed  wall  systems  may  be  efficiently  modeled 

utilizing a fastener-based model in OpenSees. This provides engineers with an efficient 

solution  that  can  predict  the shear-deformation  response  for  different  shear  wall  and 

gravity wall combinations. The provided model in this chapter is an extension of previous 

LVF1 LVF2 LVF3 LVF4 LVF5 LVF6

value at peak load (kN) -9.68 -8.75 -6.38 -5.72 -5.63 -5.66
Percentage 23.1% 20.9% 15.3% 13.7% 13.5% 13.5%

value at peak load (kN) 9.88 9.33 6.43 5.66 5.27 5.46

Percentage 23.5% 22.2% 15.3% 13.5% 12.5% 13.0%

shear wall

Right lateral loading

gravity wall

Left lateral loading
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work that focused on shear walls alone. Here the extended wall model demonstrates the 

impact  of  gravity  walls on  the  lateral  wall  system  performance.  In  the  studied  example 

the gravity wall can carry as much as half of the lateral force, although it is not accounted 

for  in  the  design  process.  Significant  additional  work  remains  to  extend  the  model  to 

more  wall  configurations  and  utilize  the  model  more  formally  in  seismic  shear  wall 

design, to better understand system reliability, and in full building models. Nonetheless, 

the model represents a significant advancement for efficient computational modeling of 

cold-formed steel framed walls and has wide potential application. 
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CHAPTER 6  

RELIABILITY  OF  COLD-FORMED  STEEL  FRAMED  SHEAR  WALLS  AS 

IMPACTED BY VARIABILITY IN FASTENER RESPONSE 

 

6.1 Abstract 

The  objective  of  this  chapter is  to  examine  the  reliability  of  cold-formed  steel  framed 

shear walls with a particular emphasis on walls sheathed with wood structural panels. A 

sheathed cold-formed steel framed shear wall is a system consisting of studs, tracks, and 

sheathing  often  with  bridging  and/or  blocking,  connected  with  steel-to-steel  and 

sheathing-to-steel fasteners. The shear walls may be integrally connected to foundations, 

floors,  or  other  shear  walls  through  a  variety  of  means  including  hold  downs,  straps, 

diaphragm  chords  and  collectors.  Shear  wall  lateral  resistance  in  cold-formed  steel 

framed  buildings  varies  because  of  the  randomness  in  the  components  and  connections 

that  comprise  the  wall.  The  interaction  between  fasteners  and  sheathing  is  particularly 

important  because (1)  sheathing-to-steel  fastener  response  is  the  main  source  of  shear 

wall  nonlinearity  (2)  there  is  high  variability  in  this  fastener  response.  Although  the 

nominal  strengths  for  different  shear  wall  configurations  are  stated  in  current  design 

specifications  (e.g.,  AISI  S400),  variability  of  shear  walls  has  not  been  explicitly 

considered.  Existing  resistance  factors  are  extrapolations  from  steel  diaphragm  testing. 

To  explore  the  impact  of  fastener  response  variability  on  shear  wall  reliability,  Monte 

Carlo simulation  of  typical  cold-formed  steel  framed  wood  sheathed  shear  walls  with 

random fastener input was conducted. Variability in fasteners was determined based on 
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a. typical experimental response 

 (adapted from [1]) 

b. comparison between experiment and determinate 

simulation (adapted from [2]) 

Figure 6-3. CFS-framed wood sheathed shear wall cyclic response 

 

CFS-framed wood-sheathed shear walls have been tested extensively. In North America 

AISI S400-15 [3]  (previously AISI S213-07 and -12 [4] ) provides nominal shear wall 

strength  for  different  types  of  sheathing,  fastener  spacing,  and  stud  and  track  thickness 

based on the available testing (e.g., see [5,6] ). The shear wall strengths in AISI S400 are 

based directly on tested capacities, and a φ=0.6 is used for the resistance factor in design. 

This  value  was  selected  initially  based  on  typical φ value  for  steel  deck  diaphragms 

(which is based on a connector failure limit state and a target reliability, β, of 3.5) and has 

remain unchanged as additional entries to the tables in the standard have been included. 

 

CFS-framed  shear  walls  may  be  viewed  as  a  small  structural  system – and  system 

reliability for steel structures in general [7] and CFS structures in particular [9] has been 

studied recently. Monte Carlo (MC) simulation of models of steel frames have been used 

to  assess  component  vs.  system  reliabilities  and  explore  system-level  resistance  (φ) 

factors based on target system reliabilities as opposed to component reliability [8] . It has 
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been shown that the system reliability of typical CFS framing under gravity demands far 

exceeds the individual component reliabilities [9]. Also, the reserve strength of CFS CFS-

framed floor diaphragms when considered as a system has been calculated [10]. . 

 

Recognizing  the  central  role  that  the  nonlinear  response  of  the  steel-fastener-sheathing 

connection  has  on  the  overall  shear  wall  response  Buonopane  et  al.  developed  and 

validated  an  OpenSees  simulation  that  adequately  predicts  CFS-framed  wood-sheathed 

shear  wall  cyclic  response [11]. This  model  provides  the  potential  to  conduct  MC 

simulation of CFS-framed shear walls and explore the variability and reliability of their 

response.  This  has  the  potential  to  provide  improvements  to  the  current  reliability 

assessment in AISI S400 [3] , which is essentially based on engineering judgment alone. 

 

The work herein employs the validated shear wall model of Buonopane et al. [11] , the 

shear wall tests of Liu et al. [1], and steel-fastener-sheathing connection tests of Peterman 

et al. [12] to perform MC simulations on a series of CFS-framed shear walls and assess 

the predicted reliability of the studied shear walls. The fastener testing is characterized in 

terms of a random variable and used to drive MC simulation of the selected shear walls. 

The simulation results are summarized and explored to provide insight on the importance 

of  load  redistribution,  fastener  location,  and  the  resulting  variability  of  shear  wall 

strength.  Next,  the  reliability  of  the  peak  strength  based  on  the  MC  simulations  is 

determined.  Finally  four  potential  shear  wall  design  methods  are  considered  and  the 

reliability  of  these  methods  assessed  against  the  available  data  both  with  and  without 

consideration  of  the  system  effect  as  discerned  from  the  MC  simulation.  The  chapter 
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Twelve  shear  wall  configurations,  as  summarized  in  Table  6-1,  from Liu’s  test  series 

were  selected  to  conduct  reliability  evaluation  of  CFS-framed shear  walls.  These  same 

walls  were  considered  deterministically  in  Buonopane  et  al. [11] where  a  model  for 

predicting the strength based on local nonlinear fastener response was developed.  

Table 6-1. Selected shear walls from Liu et al. [1]  test 

 

*Note: in test 7, there is additional one field stud 0.3 m over from side. Details see Liu et al.[1] 

 

6.4 Fastener-Based Modeling of CFS-Framed Shear Walls 

Buonopane et al. [11] developed and validated a structural model for CFS-framed wood-

sheathed  shear  walls  in  OpenSees[14] .  The  model  consists  of  elastic  beam-column 

elements  for  all  steel  framing,  rigid  diaphragm  elements  for  each  individual  sheathing 

board, linear springs for steel-to-steel connections such as the stud to track, and nonlinear 

springs  for  all  steel-fastener-sheathing  connections  (Table  6-2  summarizes  and [11]  

provides all further details). The model was able to reproduce key characteristics of the 

force–displacement hysteretic response of shear wall tests without calibration. The model 

reasonably  predicted  peak  strength, and  displacement  at  peak  strength,  as  well  as  per 

cycle and total energy dissipation. The model does not capture failure modes outside of 

Test or 
Model 
Number 

Size 
  

(mxm) 

OSB 
sheathing 

Gypsum 
sheathing 

Ledger 
 

Horizontal 
seam 
(mm) 

Vertical 
seam 
(mm) 

Tested 
strength 
(kN) 

1 1.22×2.74 ✔ - ✔ 2438 up - 21.82 
2 1.22×2.74 ✔ ✔ ✔ 2438 up - 22.43 
3 1.22×2.74 ✔ - - 2438 up - 18.65 
4 1.22×2.74 ✔ - ✔ 2133 up - 18.17 
5 1.22×2.74 ✔ - - 2133 up - 21.95 
6 1.22×2.74 ✔ - - 2133 up 305 over 15.61 
7* 1.22×2.74 ✔ - - 2438 up 610 over 18.41 
8 1.22×2.74 ✔ - - 2438 up 610 over 16.34 
9 1.22×2.74 ✔ - - 1372 up 610 over 16.95 
10 2.44×2.74 ✔ - ✔ 2438 up - 38.77 
11 2.44×2.74 ✔ ✔ ✔ 2438 up - 47.30 
12 2.44×2.74 ✔ - - 2438 up - 37.55 

 1 
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the  fasteners – i.e.  in  the  chord  studs,  track,  or  hold-down,  and  ignores  torsion  effects 

from  one-sided  sheathing  applications.  The  provided  model  is  only  valid  insofar  as 

failure is precipitated at the fasteners. 

 

In  this  model  essentially  all  nonlinearity  in  response  is  derived  from  the  connection 

model and is thus referred to as a fastener-based model for a shear wall. The model has a 

direct legacy in work on wood–framed shear walls (e.g., see [11] ) and has been used to 

characterize  the  response  of  CFS-framed  shear  walls  for  larger  whole  building  models 

[15,16].  The  model  may  include  or  exclude  the  performance  of  shear  wall  hold-downs 

depending on the measurements being compared against and the objective of the model. 

If  included  the  nonlinearity  of  the  hold-downs  and  the  potential  for  bearing-based  load 

transfer of the field and chord studs has been shown to be important [15,16]. 

 

Table 6-2. Summary of materials and elements used in OpenSees models 
Component Engineering 

designation 
Element  
type 

Element in  
OpenSees 

Material in 
OpenSees 

stud 600S162-54 Euler-Bernoulli 
beam 

DispBeamColumn linear elastic 

track 600T150-54 Euler-Bernoulli 
beam 

DispBeamColumn linear elastic 

strap 1 1/2 in.×54 mil Euler-Bernoulli 
beam 

DispBeamColumn linear elastic 

ledger track 1200T200-97 Euler-Bernoulli 
beam 

DispBeamColumn linear elastic 

sheathing Oriented Strand 
Board 

Multi-Point 
constraint 

RigidDiaphragm - 

sheathing fastener 
(wood-to-steel) 

#8 or #10 flathead 
screw 

Spring element CoupledZeroLength Pinching04 

hold-down Simpson S/HDU6 
 

Spring element Zero-length element linear elastic 

steel fastener  
(stud-to-track) 

#10 flathead screw Spring element Rotational spring Rotational  
stiffness at 11.3 
kN-m/rad 

 1  



 131 

The steel studs are modeled with displacement-based beam column elements and actual 

cross section properties are assigned to the element. The studs are connected to the top 

and bottom tracks with rotational spring elements. The rotational stiffness for the spring 

element was estimated to be 11.3 kN-m/rad based on the bare CFS frames test [1] . The 

hold-downs are modeled as uniaxial spring elements in the vertical direction. A tension 

stiffness of 9.9 kN/mm [8] was assigned to the hold-down elements, and a compression 

stiffness 1000 times as large as tension to simulate a rigid foundation. The KrylovNewton 

algorithm is used as the solver in OpenSees.  

 

The steel-fastener-sheathing connection is modeled using the Pinching04 material [17] in 

OpenSees and zero-length radial springs in the fastener-based model. Pinching04 is a one 

dimensional  hysteretic  material  model  which  employs  4  linear  segments  for  its 

monotonic  backbone  response.  The  material  also  allows  for  defining  unloading  and 

reloading  parameters  that  enable  the  user  to  define  any  level  of  pinching  and  stiffness 

degradation.  Damage  parameters  for  additional  stiffness  degradation  are  also  available, 

but not used in this work. The Pinching04 parameters were estimated based on testing by 

Peterman  and  Schafer [12]  and  applied  in  a  deterministic  fashion  in Buonopane  et  al. 

[11]. The  extension  of  this  model  from  deterministic  to  random is  the  subject  of  the 

following section. 

6.5 Characterization of Fastener Properties as Random Variables 

The  nonlinear  shear  response  of  a  fastener  connected  through  sheathing  to  steel  can  be 

determined in isolated testing. Motivated from work in sheathing braced design of studs 

[18] a small test rig was modified by Peterman et al. [12] and used to generate monotonic 
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and  cyclic  response  of  steel-fastener-sheathing  combinations  consistent  with  the  shear 

wall testing in [1] .The testing rig consists of installing two standard studs in a universal 

uniaxial  testing  machine,  attaching  the  studs  with  sheathing,  and  finally  cycling  the 

resulting specimen. For symmetry two fasteners are placed between the sheathing and the 

stud  and  both  faces  of  the  stud  are  sheathed.  Focusing  on  a  single  fastener,  before  and 

after testing, the results for a typical test are provided in Figure 6-5. 

  
(a) prior to testing (b) after failure 

Figure 6-5. Local view of small scale sheathing-fastener-stud testing for shear response (Peterman et al. 
[12] ) 

 

6.5.1 Fastener Test Data and Backbone Curve Assumption 

Considering  the  subset  of  testing  relevant  for  the  analyses  performed  herein,  the 

monotonic  tests  on  #8 fasteners  drilled  through 11.1 mm  [7/16 in.]  OSB  sheathing  and 

anchored in 1.4 mm [54 mil = 0.054 in.] steel are provided in Figure 6-6a. 



 133 

  
(a) example of fastener test curves (b) conceptual Pinching04 fit to test data 

  
(c) selected average fit from test data for 11.1 mm 

OSB sheathing and #8 screws to 54 mil steel 
(d) selected average fit from test data for Gypsum 

board and #6 screws to 54 mil steel 
 Figure 6-6. Sheathing-fastener-steel connection shear backbone response models 

 

Results  are  included  for  both  tested  fastener  spacings:  152.4  mm  (6  in.)  and  304.8  mm 

(12  in.),  since Peterman  et  al. showed  that  fastener  spacing  did  not  influence  the  local 

shear response[12] . The Pinching04 material model provides 4 linear segments that may 

be  employed  in  approximating  the  backbone  response.  Consistent  with  past  work,  the 

backbone  was  constructed  by utilizing  the  response  at 40%  peak  load,  80%  peak  load, 

peak load, and mean load at largest tested displacement as illustrated in Figure 6-6b. The 

post-peak model was considered in one of two ways: (a) brittle – following the average 

post-peak  response  or  (b)  idealized-ductile – following  the  ideal  ductile  post-peak 
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response. These two variants are used later in the simulations to understand the impact of 

the post-peak fastener behavior on the variability of the shear wall response. 

6.5.2 Generation of Random Fastener Backbones 

For  development  of  simulations  fastener  peak  strength f3 was  chosen  as  the  only 

independent random variable. All other backbone parameters are generated as dependent 

on peak strength, i.e. are perfectly correlated with f3. From the test data for a #8 fastener 

in 11.1 mm OSB sheathing and 1.4 mm steel the mean (µf3) and standard deviation (σf3) 

of the fastener strength is 2.14 kN and 0.28 kN respectively. Therefore, the coefficient of 

variation (C.O.V.) of the peak fastener strength (Vf3)=0.28/2.14=13%. 

 

The  authors  have  conducted  a  large  number  of  fastener  tests with  similar  (fasteners 

through sheathing anchored in steel sheet and exercised in shear) but not identical details 

(steel  thickness,  fastener  type,  sheathing  thickness)  to  those  used  here [10]. These 

fastener peak strengths were log-transformed and then a Lilliefors test was applied to the 

transformed  data.  The  resulting  P-value  is  0.4278,  which  is  well  above  the  typical 

threshold  e.g.  0.05  for  normality.  Therefore,  we  assumed f3 as  lognormal  and  defined 

40%f3 and 80%f3 as equal to f1 and f2 respectively. For the brittle fastener backbone f4 is 

set to 0.18 kN and in the ductile model f4 equals f3. (The final plateau strength established 

by f4 generally  is  used  to  improve  numerical  stability  of  the  models.  In  the  subsequent 

simulations  for  shear  walls  none  of  the  fastener  model  response  is  in  this  final  plateau 

regime  at  peak  shear  wall  strength,  although  it  is  common  to  be  in  the  descending 

branch). All secant stiffness for different branches in the random fastener backbone are 

the  same  as  in  the  deterministic  multipoint  linear  backbone  curve.  With  these 
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assumptions we can define displacement as d1= f1/k1, d2= d1+(f2-f1)/k2, d3= d2+(f3-f2)/k3, 

and d4= d3+(d4-d3)/k4 for the brittle fastener and d4=20 mm for the ductile fastener case. 

After 20 mm for the ductile case, the ductile plateau goes to infinity. 

 

 
 

(a) probability density function of lognormal dist.  (b) fastener strength and fastener test curve 

  
(c) brittle random fastener backbone model (d) ductile random fastener backbone model 

Figure 6-7. Distribution and random fastener backbones for brittle and ductile model 

 

The  resulting  process  for  generation  of  random  backbones  is  illustrated  in  Figure  6-7. 

Peak strength is simulated as a lognormal random variable and both brittle and idealized 

ductile fastener backbone curves can be automatically generated. The process is relatively 

straightforward – having only a single random variable and resulting in realizations that 

never cross in force-displacement space. However, it does capture the behavior observed 

in testing and provides a wide scatter of potential fastener response. The generated brittle 
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and ductile fastener backbones are used in next section for MC simulations of the shear 

wall response. Different random backbones were generated for different fasteners in the 

shear walls and assumed fasteners were uncorrelated in the shear walls. 

6.6 Monte Carlo simulation of shear wall pushover response 

MC simulation is a brute force technique for studying the stochastic response of a system. 

A  series  of  deterministic  models  are  generated  based  on  assumptions  about  the 

randomness in the system. For a large enough number of samples the assumption is that 

the  statistics  of  the  response  of  the  system  converge  towards  the  actual  probabilistic 

response. For the simulations performed here the first two moments of the peak strength 

of  the  shear  wall  (i.e.  mean  and  variance  of  the  shear  wall  strength)  are  of  particular 

interest and convergence occurs within 1000 simulations. 

6.6.1 Monte Carlo Simulation of Shear Wall with Brittle Fastener Model 

A  typical  shear  wall  test  specimen  (test  1c  in[1]  )  was  selected  to  conduct  MC 

Simulation. The dimension and configuration details are provided in Table 6-1. For this 

study,  1000  pushover  simulations  were  conducted  with  the  fastener-based  shear  wall 

model,  each  with  70  independent  identical  distributed  (i.i.d.)  random  (brittle)  fastener 

backbone models. Effectively one draw in the MC simulation of the wall includes the 70 

i.i.d. fasteners, and then a pushover analysis is conducted and the response recorded. The 

second  draw  includes  a  new  70  i.i.d.  fasteners,  and  this  continues  for  1000  total  draws 

such that statistics of the pushover simulation itself can be estimated. 

 

The lateral load displacement curves and histogram of peak strength are shown in Figure 

6-8(a)  and  (b),  respectively.  Note,  the  underlying  assumption  of  the  fastener-based 
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models, that the initial stiffness is constant, results in all 1000 simulations beginning with 

the same deterministic stiffness. To provide a comparison three additional deterministic 

models  were  run:  (a)  all  fasteners  were  given  the  mean  (µ)  backbone  response,  (b)  all 

fasteners  were  given  the  µ  +  1  standard  deviation  (σ)  backbone  response,  and  (c)  all 

fasteners were given the µ – σ fastener backbone response. Interestingly, the response of 

the shear wall is well within these bounds. In fact, even though the CoV of the fastener 

strength is 13% the CoV of the shear wall peak strength is less than 3%. This reduction in 

variability is beneficial and suggests useful redistribution of load across fasteners within 

the shear wall under load; however, it is worth noting that the mean shear wall strength is 

16.9 kN compared with 17.2 kN for the deterministic model based on average properties, 

indicating  not  all  system  effects  are  beneficial.  Thus,  a  design  that  uses  mean  fastener 

properties to predict the mean strength of the shear wall will modestly over-estimate the 

mean shear wall strength. 

  

(a) (b) 

Figure 6-8. Shear wall load-drift curve with 1000 realizations and its histogram with brittle fastener model  

 

The utilization of the fasteners within the shear wall may be measured by their demand-

to-capacity (DC) ratio. For each fastener in the shear wall, the DC ratio was defined as 
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the ratio of the fastener force at shear wall peak strength to the fastener capacity of the 

individually sampled fastener strength (i.e. each individual realization of f3). The average 

DC ratio for each fastener based on 1000 MC simulations at 1.5% wall drift and at shear 

wall peak strength are provided in Figure 6-9 (a) and (b), respectively. 

 

Figure 6-9. Average shear wall fastener demand-to-capacity ratios 

 

Fasteners  in  the  bottom  corners  have  the  highest  DC  ratios,  at  or  approaching  1.0  even 

well before the wall has reached peak strength. At peak strength, multiple fasteners in the 

bottom  are  in  the  post-peak  response  range.  Fasteners  in  the  upper  portion  of the  shear 

wall  are  not  highly  utilized  because  the  ledger  framing  at  the  top  of  the  shear  wall 

provides substantial frame bending resistance in addition to the fastener-based resistance.  
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Figure 6-10. Correlation coefficient between shear wall strength and fastener groups at peak strength for 
brittle shear wall models 

 

In  shear  walls,  fasteners  work  as  groups.  Fastener  failure,  or  degradation  in  fastener 

stiffness,  is  mitigated  by  closely  spaced  neighboring  fasteners  that  can  carry  additional 

force. To explore these fastener group effects all fasteners were divided into groups, and 
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compared  the  correlation  coefficient  for  the  weakest  fastener  strength  and  shear  wall 

strength. Fasteners at the same location, and with similar DC ratios were divided into the 

same fastener group. Figure 6-10 (a) - (f) illustrate the correlation coefficient for the six 

selected fastener groups. In the bottom corner of the shear wall the correlation coefficient 

is 0.45 while it is only 0.003 for the fastener group at the horizontal seam location. The 

failure of a single fastener does not equate to failure of the shear wall, but the failure of 

fastener in the bottom is more important than in other locations. Figure 6-10 provides a 

means to understand the relative importance of fastener location in a typical shear wall. 

6.6.2 Monte Carlo Simulation of Shear Wall with Ductile Fastener Model 

Ideally, fasteners would have fully ductile response and thus allow for weaker fasteners 

to  always  redistribute  to  stronger  fasteners.  To  understand  the  impact  of  this  ideal  case 

MC simulation employing the idealized ductile fastener model was also conducted. 1000 

simulations were conducted for shear wall 1 and the results are summarized here. Unlike 

the brittle fastener simulations, peak load is only reached when every fastener has yielded 

and this leads to unrealistic wall drifts, therefore a maximum 101.6 mm [4 in.] or 3.7% 

drift was allowed. This drift is consistent with maximum drift observed in related testing 

(see, e.g. [1]). Shear force-displacement response and a histogram of “peak” strength at 

3.7% drift are provided in Figure 6-11. The deterministic models with fastener inputs at µ 

and µ+/-σ are also provided again for comparison. As before the shear wall peak strength 

variability (CoV of 3%) is far less than the input variability on the peak fastener strength 

(CoV of 13%). However, this time, in the fully ductile model the average wall strength is 

equal  to  a  deterministic  model  based  on  average  fastener  strength.  As  expected,  no 
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detrimental  system  effects  are  observed  in  the  case  of  idealized,  fully  ductile,  fastener 

response. 

  

(a) (b) 

Figure 6-11. Shear wall load-drift curve with 1000 realizations and its histogram with ductile fastener 
model  

 

Correlation  between  the  weakest  fastener  in  a  selected  group  and  the  shear  wall  peak 

strength  are  provided  for  the  ductile  model  in  Figure  6-12.  Compared  with  the  brittle 

model results, the ductile model shows lower correlation for those fasteners that initially 

have high DC ratios. This is consistent with the complete redistribution that is allowed in 

the idealized ductile fastener case. Since the fastener has ductile behavior, even the weak 

fasteners  can  indefinitely  carry  force,  and  allow  load  redistribution.  This  redistribution 

results in fastener location having even less correlation to shear wall strength. 
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Figure 6-12. Correlation coefficient between shear wall strength and fastener groups at peak strength for 
ductile shear wall models 

 

The  simulations  indicate  that  variability  in  response  increases  with  drift  (e.g.  Figure  6-

8a). To examine this histograms of the shear wall strength were provided at 0.5, 1.0, and 

1.5% wall drift in Figure 6-13. The standard deviation in strength increases from less than 
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1% to almost 2% over the studied drift range and the brittle fastener model has slightly 

higher variability. However, the absolute magnitude of the variability is small (variance is 

0.04 kN2 at the maximum). 

 

Figure 6-13. Shear wall strength histogram under different drift 
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6.6.3 Statistical Results for Studied Shear Wall Configurations 

The testing detailed in Section 2 (Figure 6-4 and Table 6-1) covers a range of shear wall 

construction  spanning  the  conditions  employed  in  a  prototype  two-story  cold-formed 

steel  framed  building  (see Schafer  et  al. [13] ). In  this  section  MC simulation  was 

extended to all twelve shear wall configurations reported in Section 2. Shear wall model 

with brittle connections was used in all simulations.  

 

For  each  shear  wall  configuration  Monte  Carlo  simulations  were  performed.  The  mean 

(µMC),  standard  deviation  (σMC)  and  CoV  (VMC)  for  the  peak  strength  from  the 

simulations  is  reported  in  Table  6-3.  In  addition  the  mean  peak  strength  from  the  MC 

simulation  is  compared  to  the  peak  strength  based  on  a  single  deterministic  pushover 

analysis using average fastener properties (FDet) in Table 6-3. Tested shear wall strength 

is also listed in the table and compared with MC mean strength. Across all configurations 

µMC < FDet indicating  the  mean  system  strength  is  slightly  lower  than  the  expected 

strength  based  on  the  mean  component  strength.  This  is  indicative  of  a  series system; 

however, the ratio is only slightly less than 1.0 (average is 0.97) so the system effect on 

the mean strength is only modestly negative. Shear wall strength from the simulations is 

generally  similar  to  the  tested  strength – walls  with  more  conservative  simulation 

prediction  generally  have  larger  numbers  of  sheathing  boards  and  seams  and  contact 

between  the  boards  is  not  included  in  the  developed  model;  see  [11]  for  further 

discussion.  
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The  dispersion  in  results  across  the  12  studied  tests  is  depicted  in  the  box  and  whisker 

plots of Figure 6-14. Results are again normalized by FDet. Mean values are slightly less 

than  1.0  and  dispersion  is  consistently  small.  The  average  CoV  in  peak  shear  wall 

strength  for  the  studied  shear  walls  is  2.3%  and  the  maximum  CoV  is  3.0% - 

considerably less than that CoV of the peak fastener strength which is 13%. With respect 

to variability, the system effect in a shear wall is highly beneficial.   

 

Figure 6-14. Box-and-whisker plot of shear wall Monte Carlo Simulation strength/deterministic shear wall 
strength ratio 

 

6.7 Reliability of Simulated Shear Wall 

The first order second moment reliability index may be expressed as:  
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β=
ln(Rm/Qm)

VR
2+VQ

2
 

(6-1) 

 

Table 6-3. Predicted peak strength for all selected shear wall configurations  

 

where Rm is the mean resistance, VR the Coefficient of Variation (CoV) of the resistance, 

Qm is the mean demand, and VQ the CoV of the demand. AISI standards for cold-formed 

steel  design,  including  the  standard  that  governs  cold-formed  steel  framed  shear  walls 

(AISI S400-15) utilize Load and Resistance Factor Design (LRFD) as implemented and 

detailed in the commentary to AISI S100-16. For LRFD the design strength (φRn) must 

be greater than any load combinations considered (ΣγiQi) where i is a summation across 

various loading types (dead, live, wind, etc.). 

 

 φRn≥ γi∑Qi (6-2) 

 

As detailed in[19]  the substitution of Eq. (6-2) into (6-1) provides different estimates for 

β depending on the load combination selected and on the ratio of the various loads (Qi’s) 

 MC Simulation Deterministic  Experiment  

Model 
No. 

µMC 
 (kN) 

σMC  
(kN) 

VMC 
(σ/µ) 

FDet  
(kN) 

µMC / FDet 
 

Ftest  
(kN) 

µMC / Ftest 

1 17.22 0.456 2.65% 17.49 0.98 21.82 0.79 
2 22.05 0.516 2.34% 22.31 0.99 22.43 0.98 
3 16.55 0.369 2.23% 16.99 0.97 18.65 0.89 
4 17.55 0.425 2.42% 17.84 0.98 18.17 0.97 
5 16.78 0.364 2.17% 17.18 0.98 21.95 0.76 
6 12.65 0.364 2.88% 13.05 0.97 15.61 0.81 
7 15.11 0.449 2.97% 15.76 0.96 18.41 0.82 
8 15.90 0.347 2.18% 16.76 0.95 16.34 0.97 
9 16.62 0.377 2.27% 17.37 0.96 16.95 0.98 
10 37.20 0.710 1.91% 37.56 0.99 38.77 0.96 
11 45.81 0.725 1.58% 46.78 0.98 47.30 0.97 
12 33.24 0.681 2.05% 34.84 0.95 37.55 0.89 
  average: 2.30%  0.97  0.90 

 1 
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to one another. However, despite this complexity AISI S100-16 has adopted a single load 

combination  and  ratio  of  loads  for  its  LRFD  calibration – this  results  in  consistent 

approximations across different limit states, although it has conceptual limitations as fully 

discussed  in  [19].  If  we  assume  the  nominal  resistance, Rn,  is  set  equal  to  the  mean 

resistance  from  the  MC  simulations Rm,  and  employ  the  load  combinations  and  load 

ratios implicit in AISI S100, then the reliability index simplifies to: 

 

 
β=
ln(1.521/φ)

VR
2+0.212

 
(6-3) 

 

or, for a known β, the resistance factor may be found as: 

 

 φ=1.521e−β VR
2+0.212 (6-4) 

 

(Note the pre-factor 1.521 may be observed in AISI S100-16 Eq.C-B3.2.2-14[20] ). For 

this  scenario,  the  CoV  in  the  resistance  drives  the  reliability  assessment.  The  CoV  in 

Table 6-3 provides VR for the 12 simulated walls (VMC). Currently, AISI S400-15 utilizes 

a φ=0.6,  the β implied  by  this  assumption  is  provided  in  Table  6-4.  In  addition – the 

target β for AISI standards is 2.5 for members and 3.5 for connections. The φ that results 

from these target β are also provided in Table 6-4. 

 

Based on the simulated shear walls the reliability achieved in a design utilizing mean MC 

simulation results for the nominal strength and the AISI S400-15 φ factor for shear walls 
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is  significantly  in  excess  of  target  reliabilities  (mean β=4.4).  If  traditional  target 

reliabilities  are  enforced  (2.5  or  3.5)  higher φ factors  could  be  employed.  These  results 

cover a limited scope and focus on direct use of the simulation results. In design, simpler 

methods are usually employed – the following section introduces several potential design 

methods  for  CFS-framed  OSB-sheathed  shear  walls,  and  then  assesses  their  reliability 

across the 12 selected tests. 

 

Table 6-4. Reliability index and resistance factor of simulated shear walls 

 

6.8 Design Methods for OSB-Sheathed Shear Walls 

Based on  the  current  design  specification  and  our  simulation  method,  four  design 

methods are proposed below for examination of cold-formed steel shear wall resistance.  

 

Method  1:  Current  Specification  method.  In  AISI  S400-15 (previously AISI  S213-12) 

CFS-framed shear wall strength, with different sheathing types applied, is provided. The 

method  is  based  on  direct  experiments  (independent  from  the  ones  being  used  here  for 

reliability  evaluation)  and  primarily considers  thickness  of  steel  framing,  thickness  and 

type  of  sheathing,  and  fastener  spacing.  Wall  aspect  ratio  is  also  considered  for  narrow 

Model 
No. 

β  
when ϕ=0.6 

ϕ  
when β = 2.5 

ϕ  
when β =3.5 

1 4.39 0.896 0.725 
2 4.40 0.897 0.726 
3 4.40 0.897 0.726 
4 4.40 0.897 0.726 
5 4.41 0.897 0.726 
6 4.39 0.895 0.724 
7 4.39 0.895 0.724 
8 4.41 0.897 0.726 
9 4.40 0.897 0.726 
10 4.41 0.898 0.727 
11 4.42 0.898 0.728 
12 4.41 0.898 0.727 
mean  4.40 0.90 0.73 

 1 
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shear  walls.  Wall  strength  per  unit  length  of  the  wall  is  found  directly  from  a  table  in 

AISI S400-15 and multiplied times the actual wall length to arrive at the shear capacity.  

 

Method  2:  (Elastic)  First  fastener  failure  method.  In  most  structural  systems  the 

procedure for conventional design is to perform linear elastic analysis and then scale the 

results (axial, shear, and moment demands) to the first member and/or connector failure 

to  establish  the  system  strength.  Using  the  fastener-based  models  developed  by 

Buonoapane  et  al. [11] and  utilized  herein,  this  approach  can  readily  be  performed.  A 

linear elastic model of the shear wall is completed, and the results are linearly scaled until 

the peak fastener demand equals the mean fastener capacity and this is used to establish 

the  full shear  wall  strength.  The  simulation  is  linear  and  deterministic,  and  provides  a 

simple approach consistent with conventional structural design.  

 

Method  3:  Deterministic  simulation  method.  If  identical  properties  based  on  mean 

fastener  backbone  response  are  used  for  all  fasteners,  then  a  nonlinear  static  pushover 

analysis can be completed with the fastener-based shear wall model. The resulting model 

allows  for  re-distribution  but  ignores  system  effects  (beneficial  or  detrimental)  due  to 

variation  in  the  fastener  capacity.  The  simulations  are  nonlinear,  but  deterministic,  and 

provide a realistic approximation of a computational tool that engineers could employ. 

 

Method  4:  Monte  Carlo  simulation  method.  If  the  approach  of  this  chapter  is  followed 

and  the  fastener  backbone  response  is  characterized  by  a  random  variable,  then 

simulations of the random variable can be used to generate random fastener response, that 
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is  then  employed  for  the  various  fasteners  in  the  shear  wall  simulation.  These  MC 

simulations  allow for  redistribution  and  for  stochastic  variation  in  the  system  response. 

This  approach  is  the  most  robust  approach  for  a  design  method  considered  here,  but 

requires a large number of analyses to be generated and analyzed by the engineer, and is 

thus unlikely to be used in current design.  

6.9 Reliability of Design Methods against Selected Tests 

In a traditional LRFD reliability formulation the mean resistance (Rm) is connected to the 

nominal predicted resistance (Rn) per the following:   

 

 Rm=PmMmFmRn (6-5) 

 

where P, M, and F are uncorrelated random variables representing bias in the prediction 

method (i.e., the professional factor, P, which is populated by test-to-predicted ratios) as 

well  as  bias  due  to  the  material  properties  (M)  and  fabrication  of  the  structure  or 

connection being considered (F). The subscript m refers to the mean values of P, M, and 

F. The CoV of the resistance, VR, is approximated by [20] : 

 

 VR= VM
2+VF

2+VP
2 (6-6) 

 

Where VM, VF, VP are  the  CoV  of  the  material,  fabrication,  and  professional  factor, 

respectively. Substituting Eq.’s (6-2), (6-5) and (6-6) into Eq. (6-1) and again using the 

load  combinations  and  load  ratios  implicit  in  the  AISI  S100  LRFD  calibration,  the 

reliability index may be expressed as: 
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β=
ln(1.521PmMmFm/φ)

VM
2+VF

2+VP
22+0.212

 
(6-7) 

 

The  four  design  methods  considered  establish  four  predictions  for P,  i.e.  four  different 

mean (Pm) and CoV’s (VP) of test-to-predicted ratios. The remaining random variables M 

and F are considered in two different ways: (a) per the guidance in AISI S100-16 Chapter 

K,  and  (b)  informed  from  the  MC  simulation  performed  herein.  Therefore,  for  (a)  per 

AISI S100-16 and assuming connections to wood control the strength:  Mm=1.0, VM=0.15, 

Fm=1.0, and VF=0.15.  

 

In  general,  the  variation  in M and F is  intended  to  reflect  the  inherent  variation  in 

material and fabrication quality, independent from the variation in the prediction method. 

For  a  CFS-framed  OSB-sheathed  shear  wall  this  variation  is controlled  by  the  OSB-to-

steel connection limit state. The MC simulations performed here provide an estimation of 

the shear wall system variation and per Table 6-3 the average VMC=2.3%. Note, the input 

variability  of  the  peak  connector  strength  has  a  CoV of  13%; however,  this  fastener 

variability does not result in a high system variability as significant redistribution of load 

amongst the fasteners occurs. Therefore, for (b) we assume Mm=1.0, Fm=1.0 per[20] , and 

(VMC)
2 = (VM)

2 + (VF)
2 . The MC simulation provides an estimate of system variability, 

which in this case is far less than the connection variability – and this will influence the 

reliability prediction. 

The  reliability  index, β,  at  the  current  AISI  S400-15 φ value  for  shear  walls,  and  the 

resulting φ based  on  target  reliabilities  of  2.5  (members)  and  3.5  (connections)  are 
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provided in Table 6-5 for the four considered design methods across the two assumptions 

of system variability. 

Table 6-5. Reliability index and resistance factor across shear wall tests 
(a) VM and VF per AISI S100-16 connection to wood case  

 

(b) VM and VF based on MC simulation  

 

The current specification prediction AISI S400-15 is shown to provide a target reliability 

aligned  with  a  connection  limit  state  (near  3.5)  under  the  typical  assumptions  for 

variability  (Table  6-5a).  However,  if  system  variability  is  considered  as  estimated  from 

the  MC  simulation,  then  the  connection  variability  is  dampened,  and  per  Table  6-5b 

current design is conservative and the φ factor could be increased from 0.6 to 0.82 and 

still meet the connection target reliability of 3.5. The system effect, in this case, reduces 

the variability considerably and improves the predicted reliability.   

 

If the fastener-based shear wall model was used to replace the tabled solutions in AISI-

S400  the  reliability  would  depend  on  how  the  model  was  employed.  Traditional 

engineering  design  using  an  elastic  model  and  first  predicted  fastener  failure  is  unduly 

conservative  under  any  set  of  assumptions  and  has  limited  use  in  a  modern  design 

context.  The  reliability  indices  reported  in  Table  6-5  indicate  deterministic  simulation, 

essentially  a  shear  wall  pushover  analysis,  is  adequate – and  full  MC  simulation  is  not 

 
Design Method 

 
VR  

β 
when ϕ=0.6 

ϕ 
when β = 2.5 

ϕ 
when β =3.5 

AISI S400-15 0.24 3.60 0.86 0.62 
First Fastener Failure 0.25 4.84 1.29 0.93 
Det. Simulation 0.23 3.24 0.76 0.55 
MC Simulation 0.23 3.33 0.78 0.57 

 1 

Design Method VR  β when ϕ=0.6 ϕ when β = 2.5 ϕ when β =3.5 
AISI S400-15 0.12 4.79 1.04 0.82 

First Fastener Failure 0.14 6.32 1.57 1.22 
Det. Simulation 0.10 4.37 0.93 0.73 
MC Simulation 0.10 4.50 0.95 0.76 

 1 
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needed.  The  modest  decrease  in  the  mean  predicted  strength  that  occurs  in  the  MC 

simulation  is  offset  by  a  large  and  beneficial  decrease  in  variability.  This  beneficial 

system effect dominates the reliability calculation.    

 

If  deterministic  shear  wall  simulation  using  the  fastener-based  model  was  implemented 

for design and the beneficial system effect ignored, i.e. Table 6-5a results, then a φ=0.6, 

as used in current design, will meet a target reliability of 3.5. If the reduced variability of 

the  shear  wall  system  is  accounted  for  then φ could  be  increased  to  0.73  for  a  target 

reliability  of  3.5  or  as  high  as  0.93  for  the  member  target  reliability  of  2.5.  Analysis 

across  a  wider  series  of  tests  is  needed  before  drawing  final  conclusions,  but  this  work 

indicates that the fastener-based simulations can provide comparable reliability to current 

experimentally-based  design  methods – and  that  if  system  effects  on  variability  are 

incorporated then φ factors may be increased above the current value of 0.6. 

6.10 Discussion 

Reliability  evaluation,  as  provided  in  this research,  is  based  on  twelve  shear  wall  tests. 

Analysis  of  additional  shear  walls,  even  within  CFS-framed  OSB-sheathed 

configurations,  need  to  be  completed  before  final  recommendations  for  design  can  be 

made. Recent fastener testing of Moen et al. [21] provides much needed data on the steel-

fastener-sheathing  shear  response  for  a  broader  range  of  conditions  and  will  be  needed 

for any such analyses.   

 

Improvements  in  the  random  fastener  characterization  and  in  the  fastener-based  shear 

wall  model  also  provide  avenues  for  improvement.  The  random  model  for  the  fastener 
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does  not  consider  the  potential  for  differing  initial  stiffness,  this  would  potentially 

provide additional  system  variability  and  is  worth  pursuing.  The  fastener-based  shear 

wall  model  excludes  failures  in  the  studs,  tracks,  and  hold-downs  and  in  the  sheathing 

material  outside  of  the  fastener  locations.  Further,  the  role  of  the  shear  stiffness  of  the 

sheathing outside of its impact on the local fastener bearing stiffness is not captured. In 

addition,  sheet-to-sheet  edge  contact  is  not  considered  in  the  developed  models.  All  of 

these  refinements  could  further  enrich  the  discussion  of  the  shear  wall  response  and  its 

reliability across multiple potential limit states.  

 

Assessing  the  reliability  for  seismic  load  cases  is  particularly  problematic.  For  one,  the 

cyclic  response  of  the  shear  walls  must  be  considered  in  the  reliability  analysis.  In 

addition  the  reliability  formulation  must  be  re-considered.  Here  the  issue  is  avoided  by 

using  the  reliability  formulation  utilized  in  AISI  S100  and  by  considering  only  the 

fastener limit state. Meimand and Schafer in [19] provide insight on the impact of seismic 

load cases on the AISI S100 LRFD calibration (particularly VQ and the pre-factor based 

on  the  load  combination  coefficient  and  bias).  The  variations  are  high  and  resulting 

reliability indices are lower than generally assumed for all structural systems. Limit states 

outside  of  fastener-based  damage  (e.g.  local-global  buckling  of  the  chord  stud)  are 

possible,  but  their  probability  of  failure  is  significantly  reduced  through  the  use  of 

capacity-based  design  principles.  Nonetheless,  these  other  limit  states  are  not  currently 

included  in  the  fastener-based  simulation,  nor  in  the  MC  simulations  that  rely  on  this 

model and could be incorporated in the future. 
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The  current  state  of  the  art  for  assessing  seismic  response  is  the  application  of 

incremental  dynamic  analysis  (IDA).  The  fastener-based  model  provided  here  has  been 

used  for  driving  a  series  of  IDA  models  of  a  CFS-framed building  ([15,16]).  In  the 

FEMA  P695 methodology  variability  in  response  is  assessed  by  IDA  analysis  against 

different  earthquake  records – but  the  models  are  always  deterministic.  While  the 

assumption that seismic demand variation is much greater than any variation in capacity 

is  generally  believed  to  be  true,  MC  shear  wall  simulation  using  IDA  could  be  used  to 

examine  the  impact  of  capacity  separately  from  demand.  Further,  the  impact  of  brittle 

fastener  response  may  be  different  in  a  dynamic  analysis  than  in  the  nonlinear  static 

analysis and is worth further study. 

6.11 Conclusion 

Lateral  performance  of  cold-formed  steel  framed,  wood-sheathed,  shear  walls  are 

dominated  by  the  local  response  of  the  sheathing-to-steel  connections.  This  response 

derives from a complex interaction between the fastener and the sheathing and steel sheet 

that are connected together and is considered highly variable. A typical shear wall may 

rely  on  100  or  more  of  these  connections.  Monte  Carlo  simulations  developed  and 

conducted  herein  indicate  that  although  the  connection  strength  is  highly  variable 

sufficient redistribution occurs in shear walls to mitigate this variability and final system 

shear  wall  strength  is  not  highly  variable.  In  the  cases  studied  herein  the  coefficient  of 

variation  for  individual  fastener  strength  is  13%,  while  for  the  system  strength  the 

coefficient  of  variation  is  predicted  to  be  less  than  3%.  There  are  limits  to  the 

redistribution  amongst  the  fasteners  as  mean  shear  wall  strength  is  modestly  reduced 

(approximately 3%) below deterministic predictions. In addition, correlation coefficients 
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are used to quantify fastener locations (e.g. near the corners) that are more important than 

others  for  determining  wall  strength.  Examination  of  existing  and  proposed  shear  wall 

design  methods  indicate  that  the  predicted  reduction  in  variability  is  a  major  system 

benefit  when  considering  reliability.  Based  on  the  analysis  provided  herein  the  current 

resistance factor used in the American Iron and Steel Institute standard for cold-formed 

steel framed shear walls (AISI S400-15) may be excessively conservative. The predicted 

shear  wall  reliability  index, β,  in  this  study  is  4.8,  against  a  target  of  3.5.  Additional 

analyses are recommended and complications related to seismic reliability discussed, all 

with a goal of advancing reliability and design for cold-formed steel framed shear walls. 
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CHAPTER 7  

REDUCED ORDER MODELS FOR PROFILED STEEL DIAPHRAGM PANELS  

 

7.1 Abstract 

The  objective  of  this chapter is  to  provide  progress  on  development  and  validation  of 

reduced  order  models  for  the  in  plane  strength  and  stiffness  of  profiled  steel  panels 

appropriate  for  use  in  structural  models  of  an  entire  building.  Profiled  steel  panels,  i.e, 

metal  deck,  often  serve  as  a  key  distribution  element  in  building  lateral  force  resisting 

systems. Acting largely as an in-plane shear diaphragm, metal deck as employed in walls, 

roofs,  and  floors  plays  a  key  role  in  creating  and  driving  three-dimensional  building 

response.  As structural  modeling  evolves  from  two-dimensional  frameworks  to  fully 

three-dimensional  buildings,  accurate  and  computationally  efficient  models  of  profiled 

steel panels are needed. Three-dimensional building response is increasingly required by 

ever-evolving  structural  standards,  particularly  in  seismic  design,  and  structural 

efficiency  demands  that  the  benefits  of  three-dimensional  response  be  leveraged  in 

design. Equivalent orthotropic plate models provide a potential reduced order model for 

profiled  steel  panels  that  is  investigated  in  this chapter.  A  recent  proposal  for  the 

rigidities in such a model are assessed against shell finite element models of profiled steel 

panels. In addition, the impact of discrete connections and discrete panels, as occurs in an 

actual roof system, are assessed when applying these reduced order models. Extension of 

equivalent  orthotropic  plate  models  to  elastic  buckling  and  strength,  in  addition  to 

stiffness, both represent work in progress, but initial results are provided. Examples show 
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that  equivalent  orthotropic  plate  models  must  be  used  with  care  to  yield  useful  results. 

This effort is an initial step in developing efficient whole building models that accurately 

incorporate the behavior of profiled steel panels as diaphragms.  

7.2 Introduction 

Profiled steel panels, i.e., metal deck, are roll-formed from thin steel sheet and can result 

in  simple  corrugated  shapes  or  relatively  complex  longitudinal  profiles  with  additional 

transverse  features  such  as  embossments.  These  panels  serve  as  the  walls  and  roof  in 

many metal buildings, see Figure 7-1, and form an integral component of common floor 

systems in a wide variety of buildings. Under lateral loads the panels play a particularly 

important role as a distribution element, one in which the in-plane shear behavior of the 

panel is paramount. A typical profiled steel panel roof is illustrated in Figure 7-1. When 

distributing lateral load this system acts as a diaphragm, with all elements in the system 

contributing:  panel,  panel  inter-connections,  joists,  joist-to-panel  connections,  primary 

framing, and framing-to-panel connections. 

 

Figure 7-1. Typical metal building with bare profiled steel panel diaphragms 

 

Traditionally,  the  lateral  (e.g.,  seismic)  behavior  of  buildings  has  been engineered  by 

examining the two-dimensional (2D) behavior of the lateral force resisting systems in the 
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primary  frames  of  a  building.  Increasingly,  this  is  becoming  inadequate  as  (a) 

experimental  evidence  mounts  that  response  is  largely  three-dimensional (3D),  (b) 

efficiencies  demand  the  full  3D  response  be  understood,  (c)  more  complex  building 

geometries are being pursued, and (d) advances in idealizing loads creates more precise 

3D demands to be considered. In addition, due to advancements in Building Information 

Modeling it is now more common to have 3D building models. As a result, it is highly 

desirable for the engineer to develop 3D structural models; however, while such models 

can  now  be  more  readily  created  and  their  need  is  real,  with  all  details  included  such 

models  can  be  prohibitively  costly  to  run,  particularly  given  the  myriad  of  load  cases. 

Thus, we seek the advancement of accurate reduced order models that can be employed 

in 3D structural models, for modeling diaphragms with profiled steel panels. The focus of 

this chapter is  on  the  reduced  order  modeling  of  the  panel  itself  with  additional 

examination  of  the  panel  connections.  Future  work  intends  to  extend  the  effort  to  the 

complete system of Figure 7-1. 

7.3 In-plane Elastic Behavior of Profiled Steel Panels 

The  in-plane  behavior  of  profiled  steel  panels  is  critical  for  its  action  as  a  diaphragm. 

Even in the linear elastic range the mechanics involved in the in-plane deformations are 

interesting. Consider a trapezoidal corrugated panel under in-plane actions as illustrated 

in  Figure 7-2,  (a)  perpendicular  to  the  corrugations  significant  bending  occurs  and  the 

panel  is  quite  weak  with  little  Poisson  effect,  (b)  parallel  to  the  corrugations  the 

deformations  are  largely  axial  with  some  Poisson  effect,  (c)  under  in-plane  shear  edge 

(warping)  conditions  of  the  panel  become  important  and  bending  of  the  corrugations 

occur. 
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(a) axial action parallel to the corrugations 

  

(b) axial action perpendicular to the corrugation 

 
 

(c) in-plane shear 

Figure 7-2. In-plane loading and FE predicted elastic deformations for profiled steel panel 
 

Engineering  models  of  a  profiled  steel  panel  typically  cannot  include  the  details  of  the 

corrugation  and  instead  must  resort  to  an  equivalent  flat  plate.  Due  to the  strongly 

different  stiffness  parallel  and  perpendicular  to  the  corrugations  a  natural  choice  is  an 

equivalent orthotropic flat plate as detailed in the following section. 

7.4 Equivalent Orthotropic Flat Plate for Corrugated Steel Panel 

The  notion  of employing  an  equivalent  orthotropic  flat  plate  to  simulate  a  corrugated 

plate  has  long  been  used  in  engineering.  Typically,  out-of-plane  bending  behavior  is  of 

primary  interest  as  opposed  to  in-plane  behavior  and  early  work  such  as  Easley  and 

Mcfarland (1969) investigated equivalent flexural rigidities. More recently Samanta and 

Mukhopadhyay (1999) re-examined the problem and developed closed-form expressions 
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for the orthotropic plate rigidities for both out-of-plane (flexure) and in-plane (extension 

and  shear).  This  was  followed  by  Xia  et  al.  (2012),  who  expanded  on  the  earlier  work 

including correcting some assumptions, and derived a set of plate rigidities for equivalent 

orthotropic plates to model the elastic stiffness of a corrugated plate. 

 

 

(a) profiled steel panel (b) equivalent orthotropic plate 

Figure 7-3. Coordinates and basic dimensions 

 

Central to the work of Xia et al. (2012) and studied here is the conversion of a corrugated 

plate such as Figure 7-3(a) into that of an equivalent orthotropic flat plate Figure 7-3(b). 

The  rigidities  that  define  the  equivalent  flat  plate  connect  forces  and  moments  on  the 

equivalent plate to strains and curvatures, via: 
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where the overbars in Eq. (6-1) indicate they are for the equivalent plate not the original 

corrugated plate.  

Table 7-1: Plate Rigidities 

 

 

In addition, membrane-bending coupling has been ignored. Xia et al (2012) completed a 

series of energy solutions that exercise unit strains on the corrugated plate and developed 

the plate rigidities directly based on the geometry and traditional beam mechanics for the 

in-plane  terms  and  Kirchoff  plate  theory  for  the  flexural  terms.  The  developed 

expressions are provided in Table 7-1 along with additional relevant plate rigidities. 

 

 uniform flat plate direct definition 
Rigidit
y 

isotropic
a
 

 
orthotropic

b
  

(eng. constants) 
orthotropic

c
  

(Xia et al. 2012) 

A11 
Et

1−ν2
 

E1te
1−ν12ν21

 

2c

I1(1-n
2)

Et
+
12I2(1-n

2)

Et3  

A22 
Et

1−ν2
 

θx=θy=θz;uz=0

 
νA12+

l

c
ν−ν2( )Et

1−ν2 

A12 ν
Et

1−ν2
 ν12

E2te
1−ν12ν21

 

ν
2c

I1(1−ν
2)

Et
+
12I2(1−ν

2)

Et3

 

A66 Gt G12te 
l

c
Gt
 

D11 
Et3

12(1−ν2)
 

E1te
3

12(1−ν12ν21)
 

c

l

Et3

12(1−ν2) 

D22 
Et3

12(1−ν2)
 

E2te
3

12(1−ν12ν21)
 

1

2c
I2
Et

1−ν2
+I1

Et3

12(1−ν2)

⎡

⎣
⎢

⎤

⎦
⎥

 

D12 ν
Et3

12(1−ν2)
 
ν12

E2te
3

12(1−ν12ν21)
 

ν
c

l

Et3

12(1−ν2) 

D66 
Gt3

12
 

G12te
3

12
 

l

c

Gt3

12 

 
G=E/2(1+ν)

 
ν12E2=ν21E1

 
 

a. uniform plate, thickness t, material properties E and ν, note G=E/2(1+ν). 

b. uniform orthotropic plate, thickness te, properties E1,E2,v12,v21,G12, note ν12E2=ν21E1 

c. E, ν, G, t properties of original corrugated plate, c and l properties of section per Figure 2,     

I1=
dx

ds

⎛
⎝⎜
⎞
⎠⎟0

2l

∫
2

ds and I2= z2
0

2l

∫ ds. Explicit expressions provided for common cases below.  



 165 

An equivalent isotropic flat plate can only match two rigidities of the actual plate, and is 

therefore of limited use. Interestingly, an equivalent orthotropic flat plate, with uniform 

thickness, cannot match all of the 8 directly defined rigidities from Xi et al. (2012) either. 

While  multi-purpose  finite  element  software  such  as  ABAQUS  (2012)  allows  the  plate 

rigidities  of  Eq. 6-1  to  be  defined  directly  most  commercial  structural  engineering 

software does not, and at best allows the orthotropic engineering constants: E1, E2, ν12, 

ν21, G12 and an equivalent thickness, te, to be defined. Therefore, in addition to the Xia 

et al. (2012) expressions, the engineering constants that provide best agreement are also 

useful.  The  selection  is  not  unique  and  depends  on  what  quantities  the  engineer/analyst 

desires to match. For diaphragms the in-plane quantities are of the greatest prominence, 

therefore  one  set  of  solutions  is  to  match  the  Xia  et  al.  2012  in-plane  rigidities  to  an 

explicitly defined flat plate with orthotropic material one as follows: 

 E2=E decided a priori (7-2) 
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Note the Xia et al. 2012 expressions include the integrals I1 and I2 defined in the footnote 

to Table 7-1. For geometries common to steel panels, explicit form of these integrals are: 

 

 
I1=2c−2h

cosα(1−cosα)

sinα
 (7-9) 

 
I2=
2((h−x0)

3+x0
3)

3sinα
+r1(h−x0)

2+2r2x0
2
 (7-10) 

 

7.5 Validation of Equivalent in-plane Stiffness for Corrugated Panels 

To  validate  the  in-plane  equivalent  orthotropic  plate  rigidities  of  Xia  et  al.  (2012)  and 

address  an  ambiguity  in  the  edge  boundary  conditions  a  series  of  shell  finite  element 

models  of  square  (1016  mm ×  1016  mm)  corrugated  plates  (c=50.8  mm,  r=25.4  mm, 

l=61.3  mm,  t=6.35  mm,  E=210000N/mm2, α=45o)  were  developed  in  ABAQUS  using 

S4R elements. The models were exercised with in-plane actions consistent with Figure 7-

2: εx=constant, εy=constant, and γxy=constant applied as perimeter displacements. These 

actions define  ux and  uy for  the  perimeter,  but  uz, θx, θy,  and θz are  undefined  and  four 

cases  from  supported-clamped  through  out-of-plane  free  as  illustrated  in  Figure 7-4  are 

considered.  The  stiffness  predicted  by  Xia  et  al.  (2012)  is  compared  with  the  shell  FE 

model in Table 7-2. 

 

From Table 7-2 it is observed that under the right boundary conditions the expressions of 

Xia et al. (2012) are in excellent agreement with the full corrugated plate shell FE model. 

The  rigidity  aligned  with  the  corrugations  (A22)  is not  sensitive  to  the  boundary 

conditions; however, the rigidity perpendicular to the corrugations (A11, A12) is sensitive. 



 167 

The  source  of  this  sensitivity  is  the  eccentricity  between  the  centroid  in  the  transverse 

direction and the location where transverse displacements are applied, i.e. the bottom of 

the corrugation as illustrated in Figure 7-5. The Xia et al (2012) solution agrees best with 

the  assumption  of  no  out-of-plane  support  (Case  4),  thus  the  engineer  must  understand 

that this eccentricity is embedded in the expressions and not account for it a second time 

in their modeling. Interestingly, the in-plane shear rigidity expressions (A66) agrees best 

with  cases  1  and  3,  where  the  entire  perimeter  is  supported  out-of-plane.  If  this  out-of-

plane support is removed then the eccentricity effect is activated and the shear stiffness 

reduces;  however  Xia  et  al.  (2012)  does  not  account  for  this  effect  in  shear.  Thus,  the 

engineer must be aware that the Xia et al. (2012) expressions may modestly overestimate 

shear stiffness of the panel. 

 

Table 7-2. Comparison between FEM results and equivalent stiffness 

 

 

 

  Corrugated plate shell FE model / Aij 

 Xia et al. 
(2012) / 
Table 1 
(N/mm) 

Case I 
Supported- 
Clamped 
edge 

Case 2 
 

Clamped 
edge 

Case 3 
Supported  

 
edge 

Case 4 
“Free”  
 
edge 

A22 163910 0.99 0.98 0.99 0.98 

A11 4051 1.38 1.11 1.21 0.97 

A12 1215 1.57 1.29 1.19 0.98 

A66 42489 1.00 0.96 1.00 0.92 

Note: if direct rigidities cannot be modeled Eq. (2)-(8) provide E1=161 MPa, E2=203500 
MPa, ν12=0.00024, ν21=0.3, G12=91170  MPa, te=0.286 mm and  have  been  validated  to 
match Xia et al (2012) in the model 
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Case 1: Perimeter supported out-of-plane (uz=0) and 

clamped (θx=θy=θz=0) 

Case 2: Perimeter free out-of-plane  

but clamped (qx=qy=qz=0) 

 
 

Case 3: Perimeter supported out-of-plane (uz=0) but 

free to rotate 

Case 4: Perimeter free, only in-plane applied DOF 

applied 

Figure 7-4. Boundary conditions for corrugated plate with applied in-plane actions 

 

  

Case 1: Perimeter supported out-of-plane (uz=0) and 

clamped (θx=θy=θz=0) 

Case 4: Perimeter free, only in-plane applied DOF 

applied 

Figure 7-5. Deformation in FE model under transverse strain 

7.6 Impact of Discrete Connection Points and Panels on Diaphragm Stiffness 

The previous section validates the in-plane equivalent orthotropic model for an isolated 

panel under idealized boundary conditions. Actual diaphragms are composed of multiple 

discrete panels that are connected to one another and to joists and perimeter framing. This 
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section examines the impact of these details on the realized diaphragm stiffness and the 

accuracy of the equivalent orthotropic plate model. 

 

Recent  testing  by Tremblay  and  Rogers  (2004) motivated  the  geometry  studied  here. 

Specifically,  an  example  diaphragm  ~  6  m  x  3m  in  plan  employing  the  P-3615  Canam 

profile as illustrated in Figure 7-6 is studied. The models in this section do not include the 

stiffness of fasteners connecting panels or connecting to the frame, but rather treats these 

locations as discrete constraint points. Thus, the impact of localized forces on the panels 

is introduced, but the impact of the fastener stiffness is isolated from these effects. This 

provides an upperbound approximation of the stiffness and one that focuses entirely on 

the accuracy of the panel modeling. Unlike Figure 7-2, shear in this model is applied in 

the same manner as in testing with the boundary conditions as illustrated in Figure 7-6(c).  

 

The  results,  provided  in  Table  7-3,  indicate  that  only  under  idealized  edge  boundary 

conditions  is  the  equivalent  orthotropic  plate  model  adequate.  With  discrete  connection 

points  even  though  the  global  deformation  is  shear  the  extremely  weak  stiffness  in  the 

transverse  corrugation  direction  (A11 rigidity  direction)  creates  significant  local 

deformations  that  greatly  decrease  the  overall  stiffness.  Localized  forces  (connection 

points)  that  are  parallel  to  the  corrugation  (A22 rigidity  direction)  do  not  show  similar 

sensitivity,  so  the  sidelap  connections  of  the  model  with  four  discrete  panels  are  not 

problematic (locally they engage A22 rigidity), rather the perimeter connections that are 

transverse to the corrugations (in the short direction of the model) create the difficulties 

Therefore, engineers must be careful when using equivalent orthotropic plate models and 
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7.7 Accuracy of Elastic Buckling Solutions with Orthotropic Plate Models 

The  elastic  buckling  response  of  profiled  steel  panels  is  an  important  consideration  in 

their  design.  For  geometric  nonlinear  analysis  of buildings,  as  is  often  pursued  for 

predicting  ultimate  response,  the  elastic  buckling  of  the  panels  is  indicative  of  the 

potential large deformations the panel may undergo. Elastic shear buckling is known to 

be sensitive to the details of the profile, here we investigate to what extent an equivalent 

orthotropic  plate  can  still  capture  these  geometric  nonlinearities  by  investigating  the 

eigenbuckling  modes  of  the  panel  from  the  previous  section  (i.e.,  Figure  7-6)  with 

explicit  FE  models  of  the  corrugations  compared  with  equivalent  orthotropic  plate 

models. 

 

Selected elastic shear buckling loads and corresponding mode shapes for the three studied 

models  are  provided  in  Table  7-4  and  Figure  7-7.  The  elastic  buckling  results  indicate 

that  panel  shear  buckling  is the  lowest  buckling  mode,  but  the  equivalent  orthotropic 

plate  models  are  inadequate  for  accurate  prediction.  The  model  based  on  the  direct 

rigidities (including Dij) from Xia et al. (2012) is slightly better than the model based on 

the  use  of  general  engineering  parameters  (E1, E2,  etc.)  that  were  fit  to  the  in-plane 

rigidities  (Aij).  However,  the  error  is  so  large  that  the  engineer  must  use  the  equivalent 

plate  model  with  great  care  for  nonlinear  analysis.  It  is  interesting  to  note  that  in  the 

actual profiles (FE model 1) the buckling mode is not influenced by local edge conditions 

until the 13th mode, fully 1.5 times higher than the lowest (first) mode. 
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Table 7-4. First six elastic buckling modes for panel of Figure 7-6 modeled as 4 separate discrete panels 
connected every 300 mm o.c. at the perimeter and between panels 

 

 

  
 

(a) mode 1, FE model 1 (b) mode 15, FE model 1 (c) mode 1, FE model 2 

Figure 7-7. Selected elastic buckling modes in shear from models 

 

7.8 Impact of Panel Yielding on Diaphragm Stiffness and Strength 

Finite  element  collapse  analyses  of  four  different  shell  finite  element  models  with 

explicitly modeled profiles were conducted to study the impact of having discrete panels 

with  discrete  connections  on  their  collapse  behavior.  We  employed  von  Mises  yield 

criteria  with  isotropic  hardening  and  an  elastic  perfectly  plastic  stress-strain  curve  with 

Fy=345  MPa  and  E=203,500  MPa.  Loading  is  the  same  as  Figure  7-6.  Four  cases  are 

studied (a) the panel is modeled as a single continuous corrugated panel and the perimeter 

is fully connected, (b) the panel is modeled as 4 discrete panels and the perimeter is fully 

 FE model (1) 
corrugations in model 

FE model (2) 
ortho. plate  
Xia et al.  

FE model (3)  
ortho. plate  
E1, E2, etc. 

mode Vcr1 
(kN) 

notes Vcr2  
(kN) 

notes Vcr3  
(kN) 

notes 

1 99 Panel(a) 32 Panel(c) 26 Panel 
3 100 Panel  33 Panel 26 Panel 
13 147 Panel 46 Panel 39 Panel 
15 148 Panel+Edge(b)  50 Panel 41 Panel 
21 152 Edge 73 Panel 58 Panel 

Note: (a), (b), (c), see Figure 7 for corresponding buckling modes. 
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connected,  (c)  the  panel  is  modeled  as  a  single  panel  and  the  perimeter  is  connected  at 

304  mm  o.c.,  and  (d)  the  panel  is  modeled  as  4  discrete  panels  and  the  perimeter  is 

connected at 304 mm o.c. Basic shear deformation-force results are provided in Figure 7-

8 and indicate that in the idealized case the perimeter connection has a stronger influence 

on  decreasing  the  stiffness and  strength  than  the  introduction  of  discrete  panels. 

Additional study is needed including comparison to equivalent orthotropic plate models, 

but  the  shell  finite  element  models  are  able  to  capture  significant  variations  in  the 

stiffness and strength as a function of expected details and results vary by as much as a 

factor  of  five  indicating  the  importance  of  practical  details  above  and  beyond  the  basic 

panel properties. 

 

Figure 7-8. Nonlinear load-displacement curves in shear for studied models 

 

7.9 Discussion 

The  design  and  behavior  of  profiled  steel  panels  is  complex  and  includes  a  number  of 

issues not addressed in this work. Interested readers are referred to AISI S310 (2013) for 
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design standards, SDI DDM-04 (2015) for examples and additional information related to 

commonly available panels and connectors.  

 

Reduced  order  models  increase  computational  efficiency  by  reducing  the  degrees  of 

freedom.  Completed  successfully,  all  important  features  are  maintained  and  no 

compromise  is  required.  The  equivalent orthotropic  plate  reduced  order  model  pursued 

here  can  accurately  reproduce  a  variety  of  complex  global  stiffness  behavior  under 

idealized conditions, and with the explicit expressions of Xia et al. (2012) are relatively 

easy  to  implement.  However,  local features  of  the  model  are  lost,  and  when  applied  in 

non-idealized  conditions  these  features  become  important  to  the  response  and  the 

accuracy of the model degrades. The application of equivalent orthotropic plate models 

must be done with care or the results can be overly conservative. 

 

The  need  to  create  efficient  building  structural  models  is  real,  and  the  equivalent 

orthotropic  plates  studied  herein  have  some  potential,  but  may  still  represent  too  much 

computational  overhead  in  some  situations.  Completely phenomenological  models  with 

as  little  as  one  degree  of  freedom  are  also  needed  and  should  be  pursued  in  a  manner 

consistent  with  codified  design  (strength  and  stiffness  and  post-peak  response  based  on 

standards). 

7.10 Conclusions 

This chapter examines the application of equivalent orthotropic plate models for profiled 

steel  panels.  Two  methods  for  model  implementation  are  explored:  direct  input  of 

stiffness matrix rigidities, and equivalent thickness and material (E1, E2, etc.) properties. 
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Under idealized boundary conditions the in-plane stiffness of both implementations of the 

equivalent  orthotropic  plate  model  are  shown  to  have  excellent  agreement  with  shell 

finite  element  models  of  profiled  steel  panels.  Relatively  complex  Poisson  effects  and 

bending  effects  are  captured  in  the  equivalent  models  under  idealized  conditions. 

However,  under  realistic  conditions:  discrete  perimeter  fastener  spacing,  or  discrete 

numbers  of  panels  the  equivalent  orthotropic  plate  model  fails  to  capture  the  global  in-

plane shear response accurately. Global shear rigidity decreases when discrete fastening 

is  introduced,  but  local  rigidities  in  the  equivalent  orthotropic  plate  model,  particularly 

transverse  to  the  profiles,  causes  artificially  large  flexibility  and  results  in  stiffness  that 

can be as little as 20% of the actual stiffness. Elastic buckling analysis further highlights 

this problem for equivalent orthotropic plate models. Reduced order models for profiled 

steel panels are needed for whole building analysis, equivalent orthotropic plate models 

provide one possible solution, but the analysis herein shows they must be used with care 

when exercised in realistic models of buildings. 
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CHAPTER 8  

SHELL FINITE ELEMENT MODELING OF ELASTIC SHEAR STIFFNESS OF 

BARE STEEL DECK DIAPHRAGM 

 

8.1 Abstract 

The objective  of  this chapter  is  to  explore  elastic  shear  stiffness  of  bare  steel  deck 

diaphragms through high fidelity finite element modeling. Profiled steel panels, i.e, metal 

deck, often serve as a key distribution element in building lateral force resisting systems. 

Acting largely as an in-plane shear diaphragm, metal deck as employed in walls, roofs, 

and floors plays a key role in creating and driving three-dimensional building response. 

Accurate prediction of shear stiffness is needed to better understand the shear behavior of 

bare steel deck. According to the shear stiffness expression in AISI S310 or SDI’s DDM, 

total shear deformation can be separated into three parts: pure shear deformation, warping 

deformation, and connection slip. In this chapter, bare deck finite element models were 

built with typical fastener layouts from the DDM. The shear condition was performed on 

the  models  by  imposing  deformations  at  the  edge  node.  By  changing  boundary 

conditions,  these  shear  deformation  terms  can  be  separated  and  the  values  of shear 

stiffness were compared with DDM expressions. The results showed that the prediction 

of  shear  stiffness  from  pure  shear  deformation  and  connection  slip  from  finite  element 

modeling  agreed  well  with  the  DDM  prediction.  The  warping  stiffness  from  DDM  is 

smaller than finite element predictions. DDM uses a simplified model to predict warping 

deformation and this model may need to be revised. 
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8.2 Introduction 

Profiled steel panels, i.e., metal deck, are roll-formed from thin steel sheet and can result 

in  simple  corrugated  shapes  or  relatively  complex  longitudinal  profiles  with  additional 

transverse  features  such  as  embossments (Figure  8-1a).  These  panels  serve  as  the  walls 

and  roof  in  many  metal  buildings,  see  Figure 8-1b,  and  form  an  integral  component  of 

common floor systems in a wide variety of buildings. Under lateral loads the panels play 

a  particularly  important  role  as  a  distribution  element,  one  in  which  the  in-plane  shear 

behavior  of  the  panel  is  paramount.  A  typical  profiled  steel  panel  roof  is  illustrated  in 

Figure 8-1.  When  distributing  lateral  load  this  system  acts  as  a  diaphragm,  with  all 

elements in the system contributing: panel, panel inter-connections, joists, joist-to-panel 

connections, primary framing, and framing-to-panel connections. 

 

 

 

(a) Bare steel deck[1] (b) Metal building with deck[2] 

Figure 8-1. Metal deck in building 

 

Figure 8-2 shows the deformed shape of bare steel deck under shear.  
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8.3 Description of Bare Deck Models 

To  understand  the  shear  behavior  of  a bare  deck  diaphragm, Shell finite element  (FE) 

models were built and compared with DDM’s prediction. pure shear boundary conditions 

were  enforced by  imposing  shear  displacement  at  the  panel  edge  and  any  interior 

purlin/joist  nodes  (the  same  as  shown  in  Fig. 8-2).  In  the  models,  from  Eq.  8-1,  by 

dividing the total reaction force by the rotation angle we can obtain the bare deck shear 

stiffness.  

Table 8-1. Modeling matrix 

 

In  steel  deck  testing  or  in  real  construction,  all  shear  forces  are  transferred  to  the 

neighboring deck or frame through sidelap or deck-to-frame (structural) connections. In 

our  FE  models,  each  diaphragm  is  made  of  four  separate  pieces  of  deck.  In  our  FE 

models  all  imposed  shear  deformation  act  at  connection  locations.  The  considered 

fastener layouts in both directions along the deck are shown in Table 8-1. These fastener 

layouts are typical cases from DDM04 Chapter 9 augmented with some additional ideal 

cases. For the parallel-to-purlin/joist direction, there are four different cases while for the 

perpendicular-to-purlin/joist direction there are five cases, as shown in Fig. 8-3. 

 

designation spacing
(in.) 12 6 4 3 2 0(c) 0(d)

36/4 12 ✔ ✔ - - - ✔ ✔
36/5 12 ✔ ✔ - - - ✔ ✔
36/7 6 - ✔ ✔ ✔ ✔ ✔ ✔

36/9 6 - ✔ ✔ - - ✔ ✔

bottom (a) ✔ - - - - ✔ ✔

every (b) ✔ - - - - ✔ ✔

(a) single row of all FE nodes in the bottom of the flute are connected and experience imposed shear displacements 
(b) entire end cross-section are connected in a rigid plane and experience imposed shear displacements (warping restricted)

(c) no sidelap, model uses continuous deck equivalent to perfect fastening (ideal case)
(d) every node along a line connected driven to imposed shear displacement

across corrugation
(in.)

along corrugation
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(8-4a) 

or 

 
 

(8-4b) 

 

Details of the parameters in Eq. 8-4 (a) and (b) are explained below. 

8.4.2 Shear Stiffness from Panel Shear Deformation Gs’ 

The  first  term  in the  denominator  of  Eq.  8-4  (b)  represents  the  deformation  caused  by 

panel  shear  deformation.  If  shear  stiffness is  defined for  pure  panel  deformation,  the 

expression for Gs’ will be: 

  

 
Gs'=

Et

2(1+ν)
s

d

  or  
Gt
s

d

 
(8-5) 

 

For our models, the developed flute width per width:  

 

 s=2(e+w)+f (8-6) 

Where e, w and f are all cross section dimensions (See Fig. 8-4). Panel corrugation pitch 

d = 152 mm. 

 

G'=
Et

2(1+ν)
s

d
+Dn+C

G'=
1

2(1+ν)
s

d
Et

+
Dn
Et
+
C

Et
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Substituting values into Eq. 8-5, Gs’ becomes 52149.3 N/mm (298.0 kip/in.), which is the 

DDM prediction for panel shear stiffness from pure panel deformation. 

8.4.3 Shear Stiffness from Warping Deformation Gd’ 

The second term in the denominator of Eq. 8-4 (b) represents the deformation caused by 

warping deformation. Per DDM the shear stiffness for warping deformation is: 

 

 
 

(8-7) 

 

Where Dn is the warping coefficient shown below.  

 

 

 

(8-8) 

Where D is the warping constant given in DDM04 Table 3.3-2 and L is the panel length. 

The effect of Dn is often reduced to ρDn depending on the number of equal spans within 

the panel. 

 

Gd’ is defined in the table below. 

 

The origins of the Gd’ prediction can be found in DDM 01 (1981). The model assumes 

the  top  flange  “warping”  movement  is  restrained  by  an  elastic  foundation  coming  from 

the transverse stiffness of the web. 

 

 

′Gd=
Et

Dn

Dn=
D

L
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Table 8-2. Gd’ calculated from Diaphragm Design Manual  
(a) in unit N/mm 

 

(b) in unit kip/inch 

 

8.4.4 Shear Stiffness from Connection Slip Gc’ 

The last term  in the  denominator  of  Eq.  8-4  (b)  represents  the  deformation  caused  by 

connection slip. If shear stiffness is defined for connection slip, it is: 

 

 
 

(8-9) 

 

In Eq. 8-9, C is the slip coefficient and is defined in AISI S310 or DDM04 as: 

 

1:4 1:2 1:1 2:1 4:1

12 4303.1 4303.1 4303.1 8606.2 17212.4

6 4303.1 4303.1 4303.1 8606.2 17212.4

12 6080.7 6080.7 6080.7 12161.5 24322.9

6 6080.7 6080.7 6080.7 12161.5 24322.9

6 35941.4 35941.4 35941.4 71882.8 143765.7

4 35941.4 35941.4 35941.4 71882.8 143765.7

3 35941.4 35941.4 35941.4 71882.8 143765.7

2 35941.4 35941.4 35941.4 71882.8 143765.7

6 35941.4 35941.4 35941.4 71882.8 143765.7

4 35941.4 35941.4 35941.4 71882.8 143765.7

36/7

36/9

across 

corrugation

along 

corrugation

aspect ratio

36/4

36/5

1:4 1:2 1:1 2:1 4:1

12 24.6 24.6 24.6 49.2 98.4

6 24.6 24.6 24.6 49.2 98.4

12 34.7 34.7 34.7 69.5 139.0

6 34.7 34.7 34.7 69.5 139.0

6 205.4 205.4 205.4 410.8 821.5

4 205.4 205.4 205.4 410.8 821.5

3 205.4 205.4 205.4 410.8 821.5

2 205.4 205.4 205.4 410.8 821.5

6 205.4 205.4 205.4 410.8 821.5

4 205.4 205.4 205.4 410.8 821.5

36/7

36/9

across 

corrugation

along 

corrugation

aspect ratio

36/4

36/5

′Gc=
Et

C
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(8-10) 

Where Sf is the structural connection flexibility and Ss is the sidelap connector flexibility.  

For an ideal case with equal fasteners employed for sidelap and from connections, noting 

that the sidelap has two sides of panels and panel-to-framing has only one side of panel, 

then: 

 

 

 

(8-11) 

Eq. 8-10 then becomes: 

 

 

 

(8-12) 

In which: 

α1 is end distribution factor. 

α2 is the same as α1.

 

np is the number of purlins. np=3 for all models here. 

ns is the number of stitch connectors within the length L.  

α1, α2, np and ns can be obtained from DDM04 Section 2.2. 

 

The result of Gc’ calculated from Eq. 8-12 is provided in Table 8-3. 

C=E
t

w
Sf

2

2α1+npα2+2ns
Sf
Ss

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

l

Sf=
Ss
2

Gc′=
1

Sf

w

l

2α1+npα2+ns
2

⎛

⎝⎜
⎞

⎠⎟



 188 

Table 8-3. Gc’ calculated from Diaphragm Design Manual  
(a): in unit N/mm 

 

(b): in unit kip/inch 

 

       Note: Sf is estimated from isolated finite element models. Details in Section 8-4. 

8.5 Description of Finite Element Models in ABAQUS 

In ABAQUS a  series  of  models  are  developed.  Linear  elastic  isotropic  material  is  used 

for  cold-formed  steel.  Material  Young’s  modulus  is  203500  N/mm2 (29500  ksi) with 

Poisson’s  ratio  at  0.3.  S4R  element  is  used.  Single  step  linear  elastic  analysis  (linear 

perturbation)  was  conducted  under  the  shear  boundary  condition. To simulate  the  pure 

shear  behavior,  shear  displacement  was  imposed  at  the  edge  fasteners  and  purlin 

fasteners.  Out  of  plane  movement  and  rotational  degrees  of  freedom  are  constrained  at 

edge nodes. Boundary condition details are illustrated in Fig. 8-6.  

1:4 1:2 1:1 2:1 4:1

12 38504.5 38504.5 38504.5 41573.7 43108.3

6 83147.3 83147.3 83147.3 86216.5 87751.1

12 41480.7 41480.7 41480.7 43061.8 43852.3

6 86123.5 86123.5 86123.5 87704.6 88495.2

6 89285.7 89285.7 89285.7 89285.7 89285.7

4 133928.6 133928.6 133928.6 133928.6 133928.6

3 178571.4 178571.4 178571.4 178571.4 178571.4

2 267857.1 267857.1 267857.1 267857.1 267857.1

6 120907.7 120907.7 120907.7 105096.7 97191.2

4 172991.1 172991.1 172991.1 157180.1 149274.6

aspect ratio

36/4

36/5

36/7

36/9

along 

corrugation

across 

corrugation

1:4 1:2 1:1 2:1 4:1

12 220.0 220.0 220.0 237.6 246.3

6 475.1 475.1 475.1 492.7 501.4

12 237.0 237.0 237.0 246.1 250.6

6 492.1 492.1 492.1 501.2 505.7

6 510.2 510.2 510.2 510.2 510.2

4 765.3 765.3 765.3 765.3 765.3

3 1020.4 1020.4 1020.4 1020.4 1020.4

2 1530.6 1530.6 1530.6 1530.6 1530.6

6 690.9 690.9 690.9 600.6 555.4

4 988.5 988.5 988.5 898.2 853.0

36/7

36/9

across 

corrugation

along 

corrugation

aspect ratio

36/4

36/5
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Figure 8-6. Boundary condition in ABAQUS models  

 

The undeformed model (at aspect ratio 1) in ABAQUS and details of boundary condition 

are shown in Fig. 8-7.  

 

 

 

Figure 8-7. Undeformed shape of shell FE model (fastener layout: 36/4-6) 

 

ux=uy=uz=θx=θy=0 at fastener location 

edge B.C.: ux and  uy follow shear displacement 
and uz=0 at fastener location 

purlin/joist 

x 

y 

deformed shape 
undeformed shape 

γ=1/50 

panel 

panels 

sidelap: MPC pin 

S4R element 

fastener layout @36/4 

fastener @6 in.  
(152 mm) 

purlin distance: 
l

4

l
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Fig. 8-8 (a), (b) and (c) provide three representative models at aspect ratio 1:4, 1:1 and 

4:1  with  deformed  shape.  Fig. 8-8  (d)  illustrated  the  local  deformation  at  fastener 

locations.  

 

(a) Deformed shape of FE model with aspect ratio 1:4 
 

 

(b) Deformed shape of FE model with aspect ratio 1:1 

panel 

sidelap  
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(c) Deformed shape of FE model with aspect ratio 4:1 

 

(d) local deformation in model 
Figure 8-8. Deformed shape of selected finite element models  
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To  estimate Sf and Ss in  Eq.  8-12, representative  finite  element  models with  the  same 

boundary condition as in pure shear were built, and a unit load was imposed at a single 

fastener location. The finite element models are illustrated in Fig. 8-9 (a) and (b). Since 

connections  in  all  models  are  ideal  and  their  stiffness  is  infinity, Sf and Ss here  include 

local  plate  deformation  around  connections  in  the  shell  finite  element  models.  The 

resulting flexibility are Sf=3.3×10
-5 mm/N and  Ss=6.6×10

-5 mm/N. Note in this case Sf= 

Ss/2. In actual diaphragms different types of connectors are used.  

 

  

(a) model to evaluate Ss (b) model to evaluate Sf 

Figure 8-9. Finite element models to evaluate Sf and Ss 

 

8.6 Evaluation of Shear Stiffness from Finite Element Modeling 

8.6.1 Overall Result 

In  Eq.  8-1, Δ/a  (shear angle)  =1/50  for  all FE  models. Therefore,  shear  stiffness  of  the 

panel deck can be obtained from the following: 

 

 

 

(8-13) 

Where P is the reaction force and l is panel length.  

G'=
P/l

Δ/a
=
50P

l
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With finite  element  results  and  Eq.  8-13,  elastic  shear  stiffness  of  all  the  models is 

calculated.  Results  are  shown  in  Table  8-4.  From  the  results,  can  see  that  as  the  aspect 

ratio of the models changes from 1:4 to 1:1, the shear stiffness doesn't change. However, 

when the ratio is larger than 1, as the ratio increases, the elastic stiffness increases.  

 

In all discrete fastener layout cases, the deformation is contributed to by the three terms 

in Eq. 8-2. For the special boundary conditions in the last two rows of Table 8-4, we can 

separate either shear deformation caused by warping or by connection slip. The effect of 

fastener layout on shear stiffness is provided in next sections. 

 

To  illustrate  how  the  elastic  shear  stiffness  increases  and  converges  as  the  aspect  ratio 

increases, additional models were completed with aspect ratio from 0.1 to 10. From the 

results,  as  shown  in  Fig. 8-10,  we  can see  that  the  shear  stiffness  asymptotically 

converges to a constant at large aspect ratio. A model with aspect ratio of 50 is deemed 

large enough to estimate the asymptote. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 194 

Table 8-4. Shear stiffness from finite element models 
(a): in unit N/mm 

 

(b): in unit kip/inch 

 

a(ft) 12 12 12 24 48
b(ft) 48 24 12 12 12

spacing spacing spacing spacing a/4 (ft)(e) 3 3 3 6 12
(in.) (in.) (in.) (in.) (a/b) 0.25 0.5 1 2 4
12 12 12 12 11418.6 11418.6 11418.6 15347.0 18224.8
12 12 12 0(c) 12078.5 12078.5 12078.5 18476.2 25934.6
12 6 12 6 14483.1 14483.1 14483.1 20820.2 26337.9
12 6 12 0(c) 14795.8 14795.8 14795.8 22550.8 30742.1
12 0(d) 12 0(d) 17203.6 17203.6 17203.6 25871.3 34374.3
12 12 12 12 11730.5 11730.5 11730.5 15738.8 18727.0
12 12 12 0(c) 12494.1 12494.1 12494.1 18955.8 26691.9
12 6 12 6 16881.4 16881.4 16881.4 22642.1 27896.8
12 6 12 0(c) 17248.4 17248.4 17248.4 24528.0 32614.6
12 0(d) 12 0(d) 22512.5 22512.5 22512.5 29606.5 37354.0
6 6 6 6 22916.7 22916.7 22916.7 28344.7 31906.6
6 6 6 0(c) 23376.4 23376.4 23376.4 30836.1 37745.2
6 4 6 4 26812.9 26812.9 26812.9 32836.9 37090.5
6 4 6 0(c) 27109.0 27109.0 27109.0 34103.8 40560.8
6 3 6 3 27805.9 27805.9 27805.9 34313.8 38802.2
6 3 6 0(c) 28056.1 28056.1 28056.1 35644.0 41795.1
6 2 6 2 29538.2 29538.2 29538.2 36406.2 41215.0
6 2 6 0(c) 29684.6 29684.6 29684.6 37223.1 43041.5
6 0(d) 6 0(d) 32444.3 32444.3 32444.3 39631.0 44817.6
6 6 6 6 24123.2 24123.0 24123.0 28808.0 32162.0
6 6 6 0(c) 24567.1 24567.1 24567.1 31485.0 38063.0
6 4 6 4 27223.0 27223.0 27223.0 32834.0 36841.0
6 4 6 0(c) 27549.4 27549.4 27549.4 34546.9 40787.0
6 0(d) 6 0(d) 32574.9 32574.9 32574.9 39780.3 44947.9
(a) 12 (a) 12 9886.6 9886.6 9886.6 15207.3 18837.2
(a) 12 (a) 0(c) 10224.3 10224.3 10224.3 17357.7 26023.3
(a) 0(d) (a) 0(d) 36288.1 36288.1 36288.1 42034.4 46262.8
(a) 0(d) (a) 0(c) 36338.3 36338.3 36338.3 42069.0 46280.5
(b) 12 (b) 12 8963.7 8963.7 8963.7 14296.3 18790.3
(b) 12 (b) 0(c) 9184.9 9184.9 9184.9 15100.8 22752.9
(b) 0(d) (b) 0(d) 52758.4 52758.4 52758.4 52419.4 52290.6
(b) 0(d) (b) 0(c) 52758.4 52758.4 52758.4 52419.4 52290.6

(a) single row of all FE nodes in the bottom of the flute are connected and experience imposed shear displacements 
(b) entire end cross-section are connected in a rigid plane and experience imposed shear displacements (warping restricted)
(c) no sidelap, model uses continuous deck equivalent to perfect fastening (ideal case)
(d) every node along a line connected driven to imposed shear displacement

perimeter fastener spacing field (interior) fastener spacing panel dimensions and aspect ratio

36/4

across corrugation along corr. across corrugation along corr.

designation designation

36/7

36/9

bottom

every

36/4

36/5

36/7

36/9

bottom

every

36/5

a(ft) 12 12 12 24 48

b(ft) 48 24 12 12 12

spacing spacing spacing spacing a/4 (ft)(e) 3 3 3 6 12

(in.) (in.) (in.) (in.) (a/b) 0.25 0.5 1 2 4

12 12 12 12 65.2 65.2 65.2 87.7 104.1

12 12 12 0(c) 69.0 69.0 69.0 105.6 148.2

12 6 12 6 82.8 82.8 82.8 119.0 150.5

12 6 12 0(c) 84.5 84.5 84.5 128.9 175.7

12 0(d) 12 0(d) 98.3 98.3 98.3 147.8 196.4

12 12 12 12 67.0 67.0 67.0 89.9 107.0

12 12 12 0(c) 71.4 71.4 71.4 108.3 152.5

12 6 12 6 96.5 96.5 96.5 129.4 159.4

12 6 12 0(c) 98.6 98.6 98.6 140.2 186.4

12 0(d) 12 0(d) 128.6 128.6 128.6 169.2 213.5

6 6 6 6 131.0 131.0 131.0 162.0 182.3

6 6 6 0(c) 133.6 133.6 133.6 176.2 215.7

6 4 6 4 153.2 153.2 153.2 187.6 211.9

6 4 6 0(c) 154.9 154.9 154.9 194.9 231.8

6 3 6 3 158.9 158.9 158.9 196.1 221.7

6 3 6 0(c) 160.3 160.3 160.3 203.7 238.8

6 2 6 2 168.8 168.8 168.8 208.0 235.5

6 2 6 0(c) 169.6 169.6 169.6 212.7 246.0

6 0(d) 6 0(d) 185.4 185.4 185.4 226.5 256.1

6 6 6 6 137.8 137.8 137.8 164.6 183.8

6 6 6 0(c) 140.4 140.4 140.4 179.9 217.5

6 4 6 4 155.6 155.6 155.6 187.6 210.5

6 4 6 0(c) 157.4 157.4 157.4 197.4 233.1

6 0(d) 6 0(d) 186.1 186.1 186.1 227.3 256.8

(a) 12 (a) 12 56.5 56.5 56.5 86.9 107.6

(a) 12 (a) 0(c) 58.4 58.4 58.4 99.2 148.7

(a) 0(d) (a) 0(d) 207.4 207.4 207.4 240.2 264.4

(a) 0(d) (a) 0(c) 207.6 207.6 207.6 240.4 264.5

(b) 12 (b) 12 51.2 51.2 51.2 81.7 107.4

(b) 12 (b) 0(c) 52.5 52.5 52.5 86.3 130.0

(b) 0(d) (b) 0(d) 301.5 301.5 301.5 299.5 298.8

(b) 0(d) (b) 0(c) 301.5 301.5 301.5 299.5 298.8

(a) single row of all FE nodes in the bottom of the flute are connected and experience imposed shear displacements 

(b) entire end cross-section are connected in a rigid plane and experience imposed shear displacements (warping restricted)

(c) no sidelap, model uses continuous deck equivalent to perfect fastening (ideal case)

(d) every node along a line connected driven to imposed shear displacement

perimeter fastener spacing field (interior) fastener spacing panel dimensions and aspect ratio

across corrugation along corr. across corrugation along corr.

designation designation

36/4 36/4

36/5 36/5

36/7 36/7

36/9 36/9

bottom bottom

every every
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(a) 36/4-6 (b) 36/4-12 

  

(c) 36/5-6 (d) 36/5-12 

  

(e) 36/7-2 (f) 36/7-3 
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(g) 36/7-4 (h) 36/7-6 

  

(i) 36/9-4 (j) 36/9-6 

Figure 8-10. Shear stiffness G’ of different models, designated by fastener layout across and along 
corrugation 

 

8.6.2 Effect of Sidelap Connection 

Sidelap connections decrease shear stiffness of the bare deck by connection slip. For any 

model  with  a  given  fastener  layout, there  are two  sets  of  models:  the  first  includes 

discrete panels and sidelaps, the second has one whole panel with no sidelap. Table 8-5 

shows  the  ratio  of  shear  stiffness G’ between  the  two  models  with  the  same  fastener 

layout and dimension. Table 8-5 shows that the sidelap effect is not very significant for 

most  models  with  aspect  ratio  less  than  1.  As  model  length  increases  there  are  more 
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sidelap  connectors  and  the  effect  becomes  more  significant.    Generally,  the  factor 

decreases as the dimension ratio increases, but still no less than 0.7. The results of Table 

8-5 depend  on  ‘perfect’  sidelap  connectors – it  only  considers  panel  local  deformation 

instead of connection failure. Thus this gives only an idea of the influence of local panels 

flexibility on overall stiffness. It is known that if the sidelap fasteners are highly flexible 

this can dominate the full response. 

 

Table 8-5. Ratio of shear stiffness between models w/o and w/ sidelap 

 

 

8.6.3 Effect of Connections Parallel to Purlins 

From Figure 8-11 we can see that as the number of fasteners is increased at the edge and 

purlins,  shear  stiffness  of  the bare steel deck  increases.  For  different  dimension  aspect 

ratios, the increase in shear stiffness follows a similar magnitude. As in the Diaphragm 

Design Manual (DDM04), there is almost double the shear stiffness if the fastener layout 

is changed from 36/4 to 36/9 at 6 in. connector spacing at the other direction. 

1:4 1:2 1:1 2:1 4:1
12 0.95 0.95 0.95 0.83 0.70
6 0.98 0.98 0.98 0.92 0.86
12 0.94 0.94 0.94 0.83 0.70
6 0.98 0.98 0.98 0.92 0.86
6 0.98 0.98 0.98 0.92 0.85
4 0.99 0.99 0.99 0.96 0.91
3 0.99 0.99 0.99 0.96 0.93
2 1.00 1.00 1.00 0.98 0.96
6 0.98 0.98 0.98 0.91 0.84
4 0.99 0.99 0.99 0.95 0.90
12 0.97 0.97 0.97 0.88 0.72
every 1.00 1.00 1.00 1.00 1.00
12 0.98 0.98 0.98 0.95 0.83
every 1.00 1.00 1.00 1.00 1.00

aspect ratio

36/4

36/5

36/7

36/9

bottom 

every

across 
corrugation

along 
corrugation
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Figure 8-11. Effect of connections parallel to purlin 

 

8.6.4 Effect of Connections Perpendicular to Purlins 

With a fixed fastener layout in the parallel-to-purlin direction (36/7 in the figure below), 

as  fasteners  increase  in  the  other  direction,  shear  stiffness  changes.  In  Fig. 8-12,  as  the 

fastener  layout  changes  from  36/7-6  to  36/7-2,  shear  stiffness changes  from  2.2×104 

N/mm (120 kip/inch) to 3×104 N/mm (170 kip/inch) at low aspect ratio. The magnitude 

of increase for higher aspect ratio will increase, e.g.: from 35000 N/mm (200 kip/inch) to 

47200 N/mm (270 kip/inch).  
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Figure 8-12. Effect of connections perpendicular to purlin 

 

8.7 Comparison of Shear Stiffness between FEM and DDM 

8.7.1 Comparison of Gs’ and Gc’ 

In one set of FE models in Table 8-4, we assume the connectors are at all FE mesh nodes 

along  the  panel  edge  and  sidelaps  (footnote b/d  and  b/c  in  Table  8-4).  This  boundary 

condition  can  eliminate  the  effect  of  warping  deformation  and  connection  slip.  In  this 

case shear stiffness G’= Gs’ and it is 52758 N/mm (304.5 kip/in.) from FEM, while it is 

52149 N/mm (298.0 kip/inch) from DDM prediction. 

 

By  making  the  ‘length’  of  the  finite  element  models  (the  dimension  perpendicular  to 

purlin)  as  large  as  50  times  the  ‘width’  of  the  models,  the  warping  stiffness  will  be  as 
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large as infinity (From Eq. 8-7). For these special cases, shear stiffness of the steel deck 

from connection slip can be obtained from the equation below: 

 

 
Gc'=

1
1

G'
-
1

Gs'

 
(8-14) 

 

Gc’ from  DDM  are  from  Eq. (8-9)-(8-12). Gc’ for  different  panels  is  provided  and 

compared  in  Figure  8-13.  From  the  plot  we  can  see  that  for  models  36/4  and  36/5,  FE 

results can well predict the shear stiffness from connection slip. However, as the number 

of  connectors  in  the  model  increases,  the  difference  between  the  FE  prediction  and  the 

DDM prediction is increasing - FEM prediction is always larger than DDM prediction. 

  

 

Figure 8-13. Shear stiffness from connection slip Gc’ of FEM and DDM 
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This FE model does not use discrete springs, but rather the local flexibility that derives 

from applying a point load to a plate element. For the extreme cases with many fasteners, 

each loading point in the mesh is not independent. (See the influence area in Figure 8-9) 

In the real word it also don’t act independently and it is not clear whether the FE or DDM 

predictions are more accurate in this case. 

8.7.2 Warping Stiffness Gd’ 

For  selected  finite  element  models  (Table  8-4  footnote  d),  all  fasteners  are  coincident 

with  the  FE  mesh  nodes  in  the  perpendicular-to-purlin  direction.  The  large  amount  of 

fasteners can eliminate connection slip effect, and the shear stiffness from edge warping 

can be expressed as following: 

 

 
Gd'=

1
1

G'
−
1

Gs'

 
(8-15) 

 

The FE modeling prediction of shear stiffness caused by warping is provided in Table 8-

6. By comparing the results in Table 8-2 we can see that DDM and FEM predictions are 

quite different. In DDM01 (1981), the expression for warping stiffness is calculated from 

the assumption of a cantilever beam with springs distributed along the panel. Apparently 

this assumption varies significantly from the warping behavior obtained in the FE model. 

It is also possible the S4R in shear is providing artificially high results Additional study 

may be needed. 
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Table 8-6. Gd’ calculated from finite element modeling 
(a): in unit N/mm 

 

(b): in unit kip/inch 

 

8.8 Discussion 

In  this chapter,  the  elastic  shear  “diaphragm”  stiffness  of  bare  steel deck  is  explored 

through  shell  finite  element  modeling.  The effect  of  different  fastener  layout  and 

diaphragm  dimensions  is  considered.  Shell  FE  models  are  built  in  ABAQUS  and 

modeling  results  are  compared  with  AISI  310/Diaphragm  Design  Manual  (DDM) 

prediction.  The  diaphragm  stiffness  (G’)  term  could  be  written  in a  series  of  three 

stiffness  terms:  pure  shear  (Gs’),  warping  (Gd’) and  connection  slip  (Gc’).  The  finite 

element  prediction  for Gs’ and Gc’ agrees  well  with  the  DDM  prediction.  However, 

prediction  for  the Gd’ term  attributed  to  warping  is  stiffer  than  DDM prediction.  This 

1:4 1:2 1:1 2:1 4:1

12 25527.8 25527.8 25527.8 50765.2 98646.8

6 25527.8 25527.8 25527.8 50765.2 98646.8

12 39268.9 39268.9 39268.9 67467.1 127933.4

6 39268.9 39268.9 39268.9 67467.1 127933.4

6 84262.1 84262.1 84262.1 159275.1 297766.6

4 84262.1 84262.1 84262.1 159275.1 297766.6

3 84262.1 84262.1 84262.1 159275.1 297766.6

2 84262.1 84262.1 84262.1 159275.1 297766.6

6 85148.7 85148.7 85148.7 161714.3 303614.3

4 85148.7 85148.7 85148.7 161714.3 303614.3

across 

corrugation

along 

corrugation

aspect ratio

36/4

36/5

36/7

36/9

1:4 1:2 1:1 2:1 4:1
12 145.9 145.9 145.9 290.1 563.7
6 145.9 145.9 145.9 290.1 563.7
12 224.4 224.4 224.4 385.5 731.0
6 224.4 224.4 224.4 385.5 731.0
6 481.5 481.5 481.5 910.1 1701.5
4 481.5 481.5 481.5 910.1 1701.5
3 481.5 481.5 481.5 910.1 1701.5
2 481.5 481.5 481.5 910.1 1701.5
6 486.6 486.6 486.6 924.1 1734.9
4 486.6 486.6 486.6 924.1 1734.9

36/7

36/9

across 
corrugation

along 
corrugation

aspect ratio

36/4

36/5
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work  shows  that  shell  finite  element  models  are  capable  of  capturing  the  complex 

deformation  that  are  inherent  in  the  shear  behavior  of  diaphragm  composed  of  inter-

connected  steel  deck.  Differences  in  the  model  and  methods  in  DDM  suggest  that 

additional investigation into the warping deformation prediction of DDM is warranted.  
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CONCLUSIONS 

 

This  dissertation  summarized  the  author’s  Ph.D.  research  on  modeling  work  of  cold-

formed steel members and systems.  

 

Based on statistical results, for most available thin-walled open cross sections in the U.S., 

their torsional behavior is dominated by warping response. In Chapter 2, based on a small 

series  of  torsion  tests  on  a  cold-formed  steel  lipped  channels,  finite  element  models  in 

ABAQUS are developed, and these models demonstrates that inelastic reserve is existed 

before  the  member  fails. Similar  to  design  expressions  in  Direct  Strength  Method 

developed previously for axial, shear loading and bending, torsional slenderness is used 

to predict the ultimate torsional strength in this work.  

 

A model for cold-formed steel framed, wood sheathed shear wall is developed in Chapter 

3 and  the  model  is  used  to  predict shear  wall lateral  response.  An  OpenSees  model  is 

developed  with  beam-column  element  as  cold-formed  framing  and  rigid  diaphragm  for 

sheathing. The stud-to-sheathing connections are modeled as zero-length springs utilizing 

a  Pingching04  material  response  developed  from  isolated  fastener  tests. Models for 

different shear wall configurations are validated against previous conducted, monotonic 

and cyclic shear wall tests, and showed good agreement on maximum force, displacement 

and  energy  dissipation.  The  OpenSees  fastener-based  models  can  give  a  conservative 

prediction of the shear wall lateral resistance, which can be applied in future research. 
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Cold-formed steel framed, wood sheathed shear wall has two main limit states: fastener 

failure  and  chord  stud  failure.  Fastener  based  shear  wall  model is extended  to  a  model 

with  chord  stud  nonlinearity in  Chapter  4.  This  advanced  model  can  be  used  to 

demonstrate  the  switch  of  limit  states  from  fastener  failure  to  chord  stud  buckling  at  a 

high  level  of  superimposed  gravity  load.  Verification  of  this  extended  fastener  based 

model is provided with ABAQUS high fidelity models, and the load-displacement results 

from OpenSees model and ABAQUS model agree well. This is the first time a model is 

proposed to consider chord stud failure mode.  

 

CFS-NEES experiment and simulation of a full-scale cold-formed steel building showed 

that  the  gravity  wall  can benefit  the  full  wall  system on its  lateral  resistance  capacity. 

Previously  proposed  fastener  based  shear  wall  model  is  used  to  predict  the  lateral 

behavior  for  different  shear  wall  and gravity  wall  combinations in  Chapter  5. In  the 

studied  example in  this  thesis, the  gravity  wall  can  carry  as  much  as  half  of  the  lateral 

force, although it is not accounted for in the design process.  

 

A typical CFS shear wall may rely on more than 100 connections with each connection 

having variation at its strength. Although each fastener as a subsystem has high variable, 

but shear wall as a full system benefits from a system effect and has less variation. In the 

cases  studied  herein  the  coefficient  of  variation  for  individual  fastener  strength  is  13%, 

while for the system strength the coefficient of variation is predicted to be less than 3%. 

On  the  other  hand, mean  shear  wall  strength  is  modestly  reduced  (approximately  3%) 

below deterministic predictions. Examination of existing and proposed shear wall design 
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methods  indicate  that  the  predicted  reduction  in  variability  is  a  major  system  benefit 

when considering reliability. Based on the analysis provided herein the current resistance 

factor used in the American Iron and Steel Institute standard for cold-formed steel framed 

shear walls (AISI S400-15) may be excessively conservative. 

 

Diaphragm  plays  another  important  role  in  cold-formed  steel  building as  part  of lateral 

force resistance system. However, the effect of diaphragm on lateral behavior is unknown 

either  from  experiment  or  simulation.  In Chapter  7  and  Chapter  8, bare steel deck 

modeling  is  presented  in  two  aspects:  development  and  utilization  of  a  reduced  order 

model;  and shell  finite  element  modeling  of elastic  shear  stiffness  of bare steel deck. 

Reduced  order  models  increase  computational  efficiency  by  reducing  the  degrees  of 

freedom. In  this  reduced  order  model important  features  are  maintained  and  no 

compromise  is  required.  The  equivalent  orthotropic  plate  reduced  order  model  pursued 

here  can  accurately  reproduce  a  variety  of  complex  global  stiffness  behavior  under 

idealized conditions, and with the explicit expressions of Xia et al. (2012) are relatively 

easy  to  implement.  However,  local  features  of  the  model  are  lost,  and  when  applied  in 

non-idealized  conditions  these  features  become  important  to  the  response  and  the 

accuracy of the model degrades. The application of equivalent orthotropic plate models 

must be done with care or the results can be overly conservative.  

 

Under  lateral  loads bare  deck  diaphragm plays a  particularly  important  role  as  a 

distribution element, one in which the in-plane shear behavior of the panel is paramount. 

Shell finite element modeling of elastic shear stiffness of bare steel deck is explored for 
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different panel dimensions and fastener layout. According to the shear mechanism, shear 

deformation  can  be  treated  as  three  separated  terms:  panel  shear,  warping  deformation 

and connection slip. Shear stiffness is isolated as a series of separated stiffness according 

to these three deformations from finite element modeling. Finite element models are built 

and used to predict these shear stiffness by changing its boundary conditions. The result 

shows  that  the  pure  shear  and  connection  slip  shear  stiffness  terms  agree  well  with 

Diaphragm  Design  Manual  prediction,  but  the  warping  term  has  some  discrepancy 

between FEM and DDM prediction.  
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FUTURE WORK 

 

The torsion work in Chapter 2 is a limited investigation of torsion in cold-formed steel 

members.  Significant  work  remains  to  develop  a  robust  means of  handling  torsion. 

Although thin-walled members are dominated by warping torsion, additional cases (e.g. 

due  to  thickness,  end  boundary  conditions,  etc.)  where  the  contribution  of  St.  Venant 

torsion  is  non-negligible  need  further  study.  Systematic  study of  the  impact  of  this 

longitudinal variation of warping stresses is needed to understand the impact on buckling 

modes and on yielding. Simplified methods are needed for predicting torque under partial 

or full plastification. The lack of a simplified calculation for plastic torque in thin-walled 

members  leads  to  the  type  of  gross  simplifications  provided  in  the  currently  developed 

prediction  methods.  Focused  tests  and  models  varying  torsional  slenderness  in  each  of 

local,  distortional,  and  global  buckling  are  needed  to  fully  understand  the  complete 

torsional  strength.  Torsion  in  combined  loading  should  be  revisited  with  the  goal  of 

investigating limit-states based strength interaction equations to replace the stress-based 

expressions  in  current  use  in  design.  Further  testing,  modeling,  and  analytical 

developments are all needed. 

 

In  the research  work  of cold-formed  steel framed,  OSB  sheathed shear  wall  modeling, 

significant additional work remains to utilize the model more formally in seismic shear 

wall design and in full building models. Based on the current available fastener tests data 

(Moen  et  al.  2016,  Peterman  et  al.  2012  and  Landolfo  et  al.  2016),  the  fastener-based 

model  can  be  used  for  modeling  different  shear  wall  configurations and  the  modeling 

results can be compared with current design specification (AISI S400). In Chapter 4, the 
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authors  utilized  an  element  with  Pinching04  material  for  shear  wall  chord  studs,  which 

can  estimate  the chord stud  buckling  failure. A  more  systematic  research  remains  to 

explore the shear wall behavior under different superimposed gravity load for capacity-

based  design. The  modeling  results  need  to  be  formalized  and  suggestions  need  to  be 

provided for a more accurate protection factor for capacity-based design. For CFS gravity 

modeling  work,  more  wall  configurations  and  building  details  need  to  be  considered  to 

explore the gravity wall effect on the whole wall lateral resistance. In the work of CFS 

shear  wall Monte  Carlo  simulation, additional  analyses  are  recommended  and 

complications  related  to  seismic  reliability  discussed,  all  with  a  goal  of  advancing 

reliability and design for cold-formed steel framed shear walls. 

 

Future  work  remains for research  on  shear  stiffness  of bare  steel  deck. Finite  element 

models need to be extended to more broad dimensions, and nonlinear fasteners based on 

deck panel shear test can be included into the model. Warping mechanism in DDM needs 

to  be  checked  and  a  more  accurate expression  needs  to  be  proposed. Optimization  of 

connection layout for both shear wall and bare steel deck is potentially another important 

future work. 
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